You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 April 2016Attenuation correction in molecular fluorescence imaging
(Conference Presentation)
Fluorescence-guided surgery has demonstrated more complete tumor resections in both preclinical models and clinical applications. However, intraoperative fluorescence-based imaging can be challenging due to attenuation of the fluorescence by intrinsic tissue scattering and absorption. Removing attenuation in fluorescence imaging is critical in many applications. We have developed both a model based approach and an experimental approach to retrieve attenuation corrected fluorescence based on spatial frequency domain imaging (SFDI).
In the model based approach, we extended an attenuation correction model initially developed for point measurement into wide-field imaging with SFDI. To achieve attenuation correction, tissue optical properties were evaluated at both excitation and emission wavelengths, which were later applied in the model. In an in-vitro phantom study, we achieved a relative flat intensity profile over entire absorption range compared to over 80% drop at the highest absorption level before correction. Similar performance was also observed in an ex-vivo tissue study. However, lengthy image acquisition and image processing make this method ideal for static imaging instead of video-rate imaging. To achieve video-rate correction, we developed an experimental approach to reduce absorption by limiting the imaging depth using a high spatial frequency pattern. The absorption reduced fluorescence image was obtained by performing a simple demodulation. The in-vitro phantom study suggested an approximate 20% intensity drop at the highest absorption level compared to over 70% intensity drop before correction. This approach enabled video-rate attenuation corrected imaging at 19 fps, making this technique viable for clinical image guided surgery.
Bin Yang andJames W. Tunnell
"Attenuation correction in molecular fluorescence imaging
(Conference Presentation)", Proc. SPIE 9696, Molecular-Guided Surgery: Molecules, Devices, and Applications II, 969607 (26 April 2016); https://doi.org/10.1117/12.2211155
The alert did not successfully save. Please try again later.
Bin Yang, James W. Tunnell, "Attenuation correction in molecular fluorescence imaging
(Conference Presentation)," Proc. SPIE 9696, Molecular-Guided Surgery: Molecules, Devices, and Applications II, 969607 (26 April 2016); https://doi.org/10.1117/12.2211155