You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 June 2016Compressive high speed flow microscopy with motion contrast
(Conference Presentation)
High-speed continuous imaging systems are constrained by analog-to-digital conversion, storage, and transmission. However, real video signals of objects such as microscopic cells and particles require only a few percent or less of the full video bandwidth for high fidelity representation by modern compression algorithms. Compressed Sensing (CS) is a recent influential paradigm in signal processing that builds real-time compression into the acquisition step by computing inner products between the signal of interest and known random waveforms and then applying a nonlinear reconstruction algorithm. Here, we extend the continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) framework to acquire motion contrast video of microscopic flowing objects. We employ chirp processing in optical fiber and high-speed electro-optic modulation to produce ultrashort pulses each with a unique pseudorandom binary sequence (PRBS) spectral pattern with 325 features per pulse at the full laser repetition rate (90 MHz). These PRBS-patterned pulses serve as random structured illumination inside a one-dimensional (1D) spatial disperser. By multiplexing the PRBS patterns with a user-defined repetition period, the difference signal y_i=phi_i (x_i - x_{i-tau}) can be computed optically with balanced detection, where x is the image signal, phi_i is the PRBS pattern, and tau is the repetition period of the patterns. Two-dimensional (2D) image reconstruction via iterative alternating minimization to find the best locally-sparse representation yields an image of the edges in the flow direction, corresponding to the spatial and temporal 1D derivative. This provides both a favorable representation for image segmentation and a sparser representation for many objects that can improve image compression.
The alert did not successfully save. Please try again later.
Bryan Bosworth, Jasper R. Stroud, Dung N. Tran, Trac D. Tran, Sang Chin, Mark A. Foster, "Compressive high speed flow microscopy with motion contrast
(Conference Presentation)," Proc. SPIE 9720, High-Speed Biomedical Imaging and Spectroscopy: Toward Big Data Instrumentation and Management, 97200Y (28 June 2016); https://doi.org/10.1117/12.2216602