You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 April 2016Enhancement of scattering from nanoparticles using substrate effect
Scattering cross-section of metal nanoparticles is enhanced due to Localized Surface Plasmons Resonance (LSPR) permitting the observation of single metal nanoparticles as small as 40 nm using dark-field microscopy. Single particle resolved measurements allow the study of reactions happening on the nanoparticle surface involving an ultra-low number of reactant molecules to understand stochastic effects in reactive systems. Here we report a method to enhance the intensity of resonantly scattered light by using appropriately designed substrates. Specifically, we show that by using a multi-layer dielectric substrate with its high reflectance window spanning the LSPR resonance position, one can increase the intensity of scattered light by nearly an order of magnitude. We took three substrates namely Silicon, glass and the multilayer dielectric mirror. Disk shaped gold nanostructures with sizes ranging from 80 nm – 300 nm were fabricated using electron beam lithography on all three substrates. Sizes of individual nanostructures were determined by atomic force microscopy (AFM) and the dark-field image of each nanostructure was taken with an optical microscope. It was observed that the intensity of light scattered by single nanparticles was roughly an order magnitude larger than that from Silicon and glass substrates. We used a numerical scheme based on Discrete Dipole Approximation to computationally validate our results. The numerical results matched the experiments quite well. The substrate enhanced scattering signal will useful to improve the signal to noise ratio in single particle resolved measurements.
The alert did not successfully save. Please try again later.
Krishnendu Chakraborty, Abhay Tiwari, Manoj M. Varma, Murugesan Venkatapathi, "Enhancement of scattering from nanoparticles using substrate effect," Proc. SPIE 9724, Plasmonics in Biology and Medicine XIII, 97240V (22 April 2016); https://doi.org/10.1117/12.2211637