PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 9732, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Rogue waves are extremely large waves that exceed any expectation based on long-term observation and Gaussian statistics. Ocean rogue waves exceed the significant wave height in the ocean by a factor 2. Similar phenomena have been observed in a multiplicity of optical systems. While the optical systems show a much higher frequency of rogue events than the ocean, it appears nevertheless questionable what conclusions can be drawn for the prediction of ocean rogue waves. Here we tackle the problem from a different perspective and analyze the predictability of rogue events in two optical systems as well as in the ocean using nonlinear time-series analysis. Our analysis is exclusively based on experimental data. The results appear rather surprising as the optical rogue wave scenario of fiber-based supercontinuum generation does not allow any prediction whereas real ocean rogue waves and a multifilament scenario do bear a considerable amount of determinism, which allows, at least in principle, the prediction of extreme events. It becomes further clear that there exist two fundamentally different types of rogue-wave supporting systems. One class of rogue waves is obviously seeded by quantum fluctuations whereas in the other class, linear random interference of waves seems to prevail.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Wide-field microscopy, where full images are obtained simultaneously, is limited by the power available from speckle-free light sources. Currently, the vast majority of wide-field microscopes use either mercury arc lamps, or LEDs as the illumination source. The power available from these sources limits wide-field fluorescent microscopy to tens of microseconds temporal resolution. Lasers, while capable of producing high power and short pulses, have high spatial coherence. This leads to the formation of laser speckle that makes such sources unsuitable for wide-field imaging applications. Random Raman lasers offer the best of both worlds by producing laser-like intensities, short, nanosecond-scale, pulses, and low spatial coherence, speckle-free, output. These qualities combine to make random Raman lasers 4 orders of magnitude brighter than traditional wide-field microscopy light sources. Furthermore, the unique properties of random Raman lasers make possible the entirely new possibilities of wide-field fluorescence lifetime imaging or wide-field Raman microscopy. We will introduce the relevant physics that give rise to the unique properties of random Raman lasing, and demonstrate early proof of principle results demonstrating random Raman lasing emission being used as an imaging light source. Finally, we will discuss future directions and elucidate the benefits of using random Raman lasers as a wide-field microscopy light source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We solve the problem of single-shot complete temporal measurement of continuum using cross-correlation frequency-resolved optical gating, achieving the necessary large spectral range using a polarization-gating geometry and the necessary large temporal range by significantly tilting the reference pulse. In addition, we simultaneously cancel the previously unavoidable longitudinal geometrical temporal smearing by using a carefully chosen combination of pulse tilt and beam-crossing angle, thus simultaneously achieving the required temporal resolution. The result is that we are able to make a complete measurement of an individual complex continuum pulse generated in photonic-crystal fiber. By enabling measurement of single optical rogue waves, this technique could provide insight and perhaps even lead to the prediction of when mathematically similar, destructive, oceanic rogue waves may occur.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Nonlinearly generated broadband ultrafast laser have been increasingly utilized in many applications. However, traditional techniques of characterizing these sources lack the ability to observe the instantaneous features and transitory behaviours of both amplitude and phase. With the advent of the optical time stretch techniques, the instantaneous shotto- shot spectral intensity can be directly measured continuously at an unprecedentedly high speed. Meanwhile, the information of the real-time phase variation, which is carried by the frequency-time mapped spectral signal has yet been fully explored. We present a technique of experimentally measuring the spectral coherence dynamics of broadband pulsed sources. Our method relies on a delayed Young’s type interferometer combined with optical time-stretch. We perform the proof-of-principle demonstrations of spectral coherence dynamics measurement on two sources: a supercontinuum source and a fiber ring buffered cavity source, both with a repetition rate of MHz. By employing the optical time stretch with a dispersive fiber, we directly map the spectral interference fringes of the delayed neighbouring pulses and obtain a sufficiently large ensemble of spectral interferograms with a real-time oscilloscope (80Gb/s sampling rate). This enables us to directly quantify the spectral coherence dynamics of the ultrafast sources with a temporal resolution down to microseconds. Having the ensemble of single-shot interferograms, we also further calculate the cross spectral coherence correlation matrices of these ultrafast sources. We anticipate that our technique provides a general approach for experimentally evaluating the spectral coherence dynamics of ultrafast laser generated by the nonlinear processes e.g. modulation instability, supercontinuum generation, and Kerr resonator.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Fourier Domain Mode Locked laser is a novel fast frequency swept source used in Optical Coherence Tomography. The laser has a unidirectional all-fiber ring cavity that incorporates a semiconductor optical amplifier, a tunable Fabry-Perot filter and a fiber delay forming the cavity of up to 20km long. Our numerical modeling based on a set of delay differentiation equations is in excellent agreement with the experimental results that employed real-time intensity and phase characterisation techniques. We show that FDML lasers display a sequence of bifurcations that can co-exist within a sweep and lead, in particular, to the formation of Nozaki-Bekki holes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present recent results on measurements of intensity spatio-temporal dynamics in passively mode-locked fibre laser. We experimentally uncover distinct, dynamic and stable spatio-temporal generation regimes of various stochasticity and periodicity properties in though-to-be unstable laser. We present a method to distinguish various types of generated coherent structures, including rogue and shock waves, within the radiation by means of introducing of intensity ACF evolution map. We also discuss how the spectral dynamics could be measured in fiber lasers generating irregular train of pulses of quasi-CW generation via combination of heterodyning and intensity spatio-temporal measurement concept.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
For an erbium-doped fiber laser mode-locked by carbon nanotubes, we demonstrate experimentally and theoretically a new type of the vector rogue waves emerging as a result of the chaotic evolution of the trajectories between two orthogonal states of polarization on the Poincare sphere. In terms of fluctuation induced phenomena, by tuning polarization controller for the pump wave and in-cavity polarization controller, we are able to control the Kramers time, i.e. the residence time of the trajectory in vicinity of each orthogonal state of polarization, and so can cause the rare events satisfying rogue wave criteria and having the form of transitions from the state with the long residence time to the state with a short residence time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Using experiments with single mode optical fibers and numerical simulations, we investigate the statistics of partially coherent waves propagating in the anomalous dispersion regime (P. Walczak et al., 114, Phys. Rev. Lett. (2015)). Using an asynchronous optical sampling setup, we measure precisely the probability density function (PDF) of the optical power that fluctuates randomly and rapidly with time. The resolution time of our fast-measurement of the PDF is better than 250fs. Along the propagation inside the nonlinear fiber, the PDF is found to evolve from the normal law to a strong heavy-tailed distribution. Numerical simulations of the one-dimensional nonlinear Schrödinger equation (1D-NLSE) with stochastic initial conditions reproduce quantitatively the experiments. Our experimental and numerical study demonstrates the formation of rogue waves in the focusing regime of integrable turbulence. Moreover, our numerical investigations suggest that the statistical features experimentally observed rely on the stochastic generation of coherent analytic solutions of 1D-NLSE such as solitons on finite background.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Temporally characterizing optical pulses is an important task when building, optimizing, and using optical sources. Direct photodetection with high-bandwidth photodiodes and real-time oscilloscopes is only adequate for optical pulses longer than ~10 ps; diagnostics based on indirect strategies are required to characterize femtosecond and sub-10-ps coherent sources. Most of these diagnostics are based on nonlinear optics and can be difficult to implement for the single-shot characterization of nonrepetitive events. A temporal diagnostic based on phase diversity is demonstrated in the context of picosecond high-energy laser systems, where single-shot pulse measurements are required for system safety and interpretation of experimental results. A plurality of ancillary optical pulses obtained by adding known amounts of chromatic dispersion to the pulse under test are directly measured by photodetection and processed to reconstruct the input pulse shape. This high-sensitivity (~50-pJ) diagnostic is based on a pulse replicator composed of fiber splitters and delay fibers, making it possible to operate with fiber sources and free-space sources after fiber coupling. Experimental data obtained with a high-bandwidth real-time oscilloscope demonstrate accurate characterization of pulses from a high-energy chirped-pulse amplification system, even for pulses shorter than the photodetection impulse response.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Multiple pulsing is a feature of most mode-locked ultrafast laser systems at very high pump powers, and slight variations in the pump power around certain regimes can cause sinusoidally-varying or even chaotic separations among pulses. The impact of this type of unstable multipulsing on modern pulse measurement methods has not been studied. We have performed calculations and simulations and find that allowing only the relative phase of a satellite pulse to vary causes the satellite to wash out of the SPIDER measurement completely. Although techniques like FROG and autocorrelation cannot accurately determine the precise properties of satellite pulses, they do succeed in seeing them.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The present paper for the first time proposes and studies a relatively simple model of noise-like pulses that matches the experimental data well and suggests that there is a correlation between phases of adjacent spectral components of noiselike pulses. Comparison of a relatively basic model of ‘random’ pulses with the results of noise-like pulse modelling in mode-locked fibre lasers based on coupled non-linear Schrödinger equations demonstrates that it adequately reproduces temporal and spectral properties of noise-like pulses as well as correlation between adjacent modes so that it’s possible to use the proposed model for highly efficient simulations of promising applications of noise-like pulses, such as material processing, non-linear frequency conversion, microscopy, and others.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.