PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 9735, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Thin-film photovoltaic panels consist of individual solar cells which are monolithically interconnected in series. Today, these connections are commonly realized by mechanical methods. In order to increase the solar output, it is one approach to minimize the interconnection area (so called “dead area”). In this regard, recent advances in laser patterning are gaining increasing potential. However, especially high-impedance trenches realized via laser scribing generally suffer from insufficient shunt resistances. This is especially the case for the third structuring stage P3 of CIGS solar modules, which represents the isolation of nearby cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The laser assisted micro structuring of thin films especially for electronic applications without influence the functionality of the multi-layer system e.g. due to melting products is a challenge for the laser micro machining techniques. The P2 scribing of copper indium gallium selenide (CIGS) solar cells on stainless steel carrier foil was studied using shockwave- induced film delamination (SWIFD) patterning. The delamination process is induced by a shock wave generated by the laser ablation of the rear side of the carrier foil. In the present study UV nanosecond laser pulses provided by a KrF excimer laser were used to induce the SWIFD process. The morphology and size of the achieved thin-film structures were studied in dependence on various laser irradiation parameters by optical and scanning electron microscopy (SEM). Furthermore, the materials composition after the laser patterning was analyzed by energy dispersive X-ray spectroscopy (EDX). The temporal sequences of processes involved in the SWIFD process were analyzed with high speed shadowgraph experiments. The results of the present study shows that in dependence on the laser parameter used a large process window exist in which the CIGS thin film can be removed from the substrate without visible thermal modification of the CIGS thin film.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Laser scribing is an indispensable step in the industrial production of Cu(In,Ga)Se2 thin film solar modules. While cell separation (P1 and P3) is usually achieved using high velocity, low overlap lift-off processes, removal of the absorber layer for generating an electrical back-to-front interconnect (P2) is typically a slow process. In the present study we present an approach for scaling the classical P2 process velocity to an industrially exploitable level. We demonstrated successful P2 scribing at up to 1.7 m/s in a single beam, single pass configuration using a linear focal spot. The presented process is robust against variations in the scribing velocity and focal position, a key point for successful machine integration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We have developed an all-laser processing technique by means of two industrially-relevant continuous-wave fiber lasers operating at 1070 nm. This approach is capable of both substrate heating with a large defocused beam and material processing with a second scanned beam, and is suitable for a variety of photovoltaic applications. We have demonstrated this technique for rapid crystallization of thin film (~10 μm) silicon on glass, which is a low cost alternative to wafer-based solar cells. We have also applied this technique to wafer silicon to control dopant diffusion at the surface region where the focused line beam rapidly melts the substrate that then regrows epitaxially. Finite element simulations have been used to model the melt depth as a function of preheat temperature and line beam power. This process is carried out in tens of seconds for an area approximately 10 cm2 using only about 1 kW of total optical power and is readily scalable. In this paper, we will discuss our results with both c-Si wafers and thin-film silicon.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
For higher-density integration and acceleration of operating speed in Si ICs, 3D integration of wafers and/or dies is essential. Fabrication of current 3D ICs relies on 3D assembly which electrically connects stacked chips to form a single circuit. A key technology for the 3D assembly is TSVs which are vertical electrical connections passing completely through silicon chips to electrically connect vertically assembled Si ICs. Typical TSVs have wide features, with diameters of a range from several microns to 50 μm and depths up to 500 μm with aspect ratios up to 15 depending on the application and integration scheme. In this work, we present high-throughput, taper-free TSVs fabrication using femtosecond Bessel beams operated at different wavelengths from 400 nm to 2.4 μm. Furthermore, special phase filters are designed to suppress the damages induced by the side-lobes of Bessel beams for high-quality TSVs fabrication. Our technique can be potentially used for 3D assembly in manufacture of 3D silicon integrated circuits.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals.
In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
While applications such as drilling μ-vias and laser direct imaging have been well established in the electronics industry, the mobile device industry’s push for miniaturization is generating new demands for packaging technologies that allow for further reduction in feature size while reducing manufacturing cost. CO lasers have recently become available and their shorter wavelength allows for a smaller focus and drilling hole diameters down to 25μm whilst keeping the cost similar to CO2 lasers. Similarly, nanosecond UV lasers have gained significantly in power, become more reliable and lower in cost. On a separate front, the cost of ownership reduction for Excimer lasers has made this class of lasers attractive for structuring redistribution layers of IC substrates with feature sizes down to 2μm. Improvements in reliability and lower up-front cost for picosecond lasers is enabling applications that previously were only cost effective with mechanical means or long-pulsed lasers. We can now span the gamut from 100μm to 2μm for via drilling and can cost effectively structure redistribution layers with lasers instead of UV lamps or singulate packages with picosecond lasers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Laser 3D Micro/Nano Structuring: Joint Session with Conferences 9735 and 9738
Novel electrofluidic microdevices based on monolithic integration of 3D metal electrodes into 3D glass microchannels have been prepared by femtosecond (fs) laser hybrid microfabrication. 3D microchannels with smooth internal walls are first prepared in photosensitive glass by fs laser-assisted chemical wet etching process combined with post-annealing. Then, 3D electrode patterning in prepared glass channels is carried out by water-assisted fs-laser direct-write ablation using the same laser followed by electroless metal plating. Laser processing parameters are optimized and the roles of water during the laser irradiation are discussed. The fabricated electrofluidic devices are applied to demonstrate 3D electro-orientation of cells in microfluidic environments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Morphing commonly refers to the smooth transition from a specific shape into another one, in which the initial and final shapes can be significantly different. In this study, we show that the concept of morphing applied to laser micromanufacturing offers an opportunity to change the topology of an initial shape, and to turn it into something more complex, like for instance for creating self-sealed cavities. Such cavities could be filled with various gases, while also achieving an optical surface quality since being shaped by surface tension. Furthermore, we demonstrate that laser morphing can be accurately modelled and predicted. Finally, we illustrate the possible use of ‘laser-morphed’ shape to achieve high-quality resonators that can find applications, for instance, in ultra-small quantities molecules label-free detection through whispering gallery mode resonances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Dynamics of Laser Ablation I: Joint Session with Conferences 9735 and 9740
We develop an experiment of laser-matter interaction in air environment with ultrashort pulses of 12 fs in the context of micromachining. From post-mortem analysis of the sample, we determine the ablation thresholds of fused silica and sapphire exposed to single 12-fs laser pulse. We also analyze the evolution of macroscopic ablation quantities, taking into account the role of nonlinear propagation effects in air prior the target.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 – 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Dynamics of Laser Ablation II: Joint Session with Conferences 9735 and 9740
Antimony is an interesting elemental crystal because, in its ground state, it is stabilized by a Peierls distortion. Here we perform density-functional-theory molecular dynamics simulations of this intriguing material before and after femtosecond-laser excitation using a simulation box with N = 864 atoms and periodic boundary conditions, where the atoms are treated in the Γ-point approximation and the electrons are integrated over 8 k points. After an appropriate initialization of the atoms in the harmonic approximation we thermalize our system during 20 picoseconds. Then an intense femtosecond-laser excitation is simulated by instantaneously raising the electronic temperature to 8000 Kelvin. Our results show a laser-induced anti-Peierls transition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Picosecond laser systems have been widely used in industrial microprocessing applications since they are a cost-effective tool to achieve high throughput. To better understand the ablation process, firstly the dependence of the ablation depth and the threshold fluence on the laser spot size were determined experimentally by performing ablation with a 10ps pulsed laser system. Further, a 2D axisymmetric model was established to demonstrate the possible mechanism of the phenomena. Three sets of spot radii, namely 15.5μm, 31.5μm and 49.6μm, respectively with equal laser peak fluences ranging from 0.6J/cm2 to 4.5J/cm2 were applied on copper. It was found that the laser ablation depth increases while the threshold fluence decreases with decreasing spot size at identical peak fluence. A 2D axisymmetric thermomechanical model was developed to qualitatively illustrate the mechanism behind these phenomena. The numerical results of the position where the tensile stress exceed to ultimate tensile strength (UTS) of copper show the same trend as the experimental ones. The longitudinal tensile stress was seen to play a more crucial role than the radial tensile/compressive stress on laser ablation process. The impact of the thermal stress on the ablation depth and threshold fluence is derived from the lattice temperature gradient along the surface of the material, leading to spallation and possible modifications of the mechanical properties already at lower laser peak fluences. This is elucidated numerically and analytically. The deviation of the experimental results from the simulation might be attributed to the fact that this simulation model is static. Nevertheless, at low laser fluences, this static approach can provide good explanations of the cold ablation with ultrashort pulsed laser. The limitation of this model is also illustrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Machining of Transparent Materials I: Joint Session with Conferences 9735 and 9740
Interaction of ultrashort laser pulses with transparent materials is a powerful technique of modification of material properties for various technological applications. The physics behind laser-induced modification phenomenon is rich and still far from complete understanding. We present an overview of our models developed to describe processes induced by ultrashort laser pulses inside and on the surface of bulk glass. The most sophisticated model consists of two parts. The first part solves Maxwell’s equations supplemented by the rate and hydrodynamics equations for free electrons. The model resolves spatiotemporal dynamics of free-electron population and yields the absorbed energy map. The latter serves as an initial condition for thermoelastoplastic simulations of material redistribution. The simulations performed for a wide range of irradiation conditions have allowed to clarify timescales at which modification occurs after single laser pulses. Simulations of spectrum of laser light scattered by laser-generated plasma revealed considerable blueshifting which increases with pulse energy. To gain insight into temperature evolution of a glass material under the surface irradiation conditions, we employ a model based on the rate equation describing free electron generation coupled with the energy equations for electrons and lattice. Swift heating of electron and lattice subsystems to extremely high temperatures at fs timescale has been found at laser fluences exceeding the threshold fluence by 2-3 times that can result in efficient bremsstrahlung emission from the irradiation spot. The mechanisms of glass ablation with ultrashort laser pulses are discussed by comparing with the experimental data. Finally, a model is outlined, developed for multi-pulse irradiation regimes, which enables gaining insight into the roles of defects and heat accumulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Characteristics by laser micromachining of congruent, stoichiometric and doped lithium niobate by using ultrashort laser pulses with different wavelengths from ultraviolet up to infrared were investigated. The ablation thresholds were determined in dependence of c+-side and accordingly c−-side. The strong impact of crystal orientation by micromachining lithium niobate will be additionally shown by the use of a high pulse repetition rate of 1000 kHz. Furthermore, we demonstrate the advantage of processing smooth ridges with high-repetition UV picosecond laser-pulses in combination of post-processing thermal annealing and a low-loss ridge waveguide in congruent LiNbO3 will be demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Machining of Transparent Materials II: Joint Session with Conferences 9735 and 9740
For the development of industrial NIR ultrafast laser processing of transparent materials, the absorption inside the bulk material has to be controlled. Applications we aim for are front and rear side ablation, drilling and inscription of modifications for cleaving and selective laser etching of glass and sapphire in sheet geometry.
We applied pump probe technology and in situ stress birefringence microscopy for fundamental studies on the influence of energy and duration (100 fs – 20 ps), temporal and spatial spacing, focusing and beam shaping of the laser pulses.
Applying pump probe technique we are able to visualize differences of spatio-temporal build up of absorption, self focusing, shock wave generation for standard, multispot and beam shaped focusing. Incubation effects and disturbance of beam propagation due to modifications or ablation can be observed.
In-situ imaging of stress birefringence gained insight in transient build up of stress with and without translation. The results achieved so far, demonstrate that transient stress has to be taken into account in scaling the laser machining throughput of brittle materials. Furthermore it points out that transient stress birefringence is a good indicator for accumulation effects, supporting tailored processing strategies.
Cutting results achieved for selective laser etching by single pass laser modification exemplifies the benefits of process development supported by in situ diagnostics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Laser-induced Nanostructures I: LIPSS: Joint Session with Conferences 9735 and 9737
The present work investigates the influence of the pulse duration and the temporal spacing between pulses on the ablation of aluminosilicate glass by comparing the results obtained with pulse durations of 0.4 ps and 6 ps. We found that surface modifications occur already at fluences below the single pulse ablation threshold and that laser-induced periodic surface structures (LIPSS) emerge as a result of those surface modifications. For 0.4 ps the ablation threshold fluences is lower than for 6 ps. Scanning electron micrographs of LIPSS generated with 0.4 ps exhibit a more periodic and less coarse structure as compared to structures generated with 6 ps. Furthermore we report on the influence of temporal spacing between the pulses on the occurrence of LIPSS and the impact on the quality of the cutting edge. Keywords: LIPSS,
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Laser-induced Nanostructures II: Joint Session with Conferences 9735 and 9737
Observation of graphene growing process on SiC(0001) step and terrace structure formed by direct laser patterning is proposed. We have proposed a novel method of direct growth of patterned graphene on SiC(0001) surfaces using KrF excimer-laser irradiation. KrF excimer-laser with a wavelength of 248 nm and a duration of 55 ns was used to graphene forming in this study. Laser irradiation was achieved with various laser fluenece. Grain size and number of layers of the graphene was varied by laser irradiation condition. Through conductive atomic force microscopy, it was observed that graphene grain expanded from (112 _ n) faced step area to (0001) faced terrace area in initial graphene growth process. From the result of the Raman spectroscopy, transmission electron microscopy and Conductive AFM, we summarized graphene growth process on SiC(0001) surfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Lasers have proven to be unique tools for a highly selective processing of nanomaterials system on the basis of the enhanced laser field, maintaining other sensitive portion in the system untouched. However, in many practical applications, a wide interspacing distribution among nanomaterials and nonlinear laser absorption properties of the nanomaterials in the highly excited nanomaterials states, frequently lead to rather adverse effects in terms of controlled nanomaterials processing. In this study, we will take a few laser nanomaterials processing examples mainly based on the nanowires system including the spin coated metallic nanowires for transparent electrode applications and selective semiconductor nanowires growth from the metallic nanocatalysts, and discuss on the role of the enhanced laser field via the combined theoretical and experimental investigations. Specific aims of properly utilizing the enhanced laser fields are to achieve improved electrical conductance for practical transparent electrode applications, and to facilitate directed growth of semiconductor nanowires at designated sample locations, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We synthesized magnesium (Mg)-doped ZnO microspheres by laser ablation of a ZnO sintered target containing magnesium oxide (MgO) with the fundamental of a Nd:YAG laser at 1064 nm. The well-spherical ZnO microcrystals with diameters of 1-20 μm were collected on a substrate which was put near the ablation spot. X-ray diffraction and micro-Raman spectrum indicate that the ZnO microspheres have a crystalline structure. Room-temperature photoluminescence properties of the microsphere were investigated under third harmonic generation of a Nd:YAG laser excitation at 355 nm. An ultraviolet (UV) lasing in whispering gallery mode (WGM) and blue-shift of the UV WGM peaks were observed from the Mg-doped ZnO microsphere.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
High accuracy, quality and throughput are key factors in laser micro machining. To obtain these goals the ablation process, the machining strategy and the scanning device have to be optimized. The precision is influenced by the accuracy of the galvo scanner and can further be enhanced by synchronizing the movement of the mirrors with the laser pulse train. To maintain a high machining quality i.e. minimum surface roughness, the pulse-to-pulse distance has also to be optimized. Highest ablation efficiency is obtained by choosing the proper laser peak fluence together with highest specific removal rate. The throughput can now be enhanced by simultaneously increasing the average power, the repetition rate as well as the scanning speed to preserve the fluence and the pulse-to-pulse distance. Therefore a high scanning speed is of essential importance. To guarantee the required excellent accuracy even at high scanning speeds a new interferometry based encoder technology was used, that provides a high quality signal for closed-loop control of the galvo scanner position. Low inertia encoder design enables a very dynamic scanner system, which can be driven to very high line speeds by a specially adapted control solution. We will present results with marking speeds up to 25 m/s using a f = 100 mm objective obtained with a new scanning system and scanner tuning maintaining a precision of about 5 μm. Further it will be shown that, especially for short line lengths, the machining time can be minimized by choosing the proper speed which has not to be the maximum one.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, ≤50um with ps laser, and ≤20um with sub-ps laser, respectively was observed as a criteria of selecting the laser pulse width. The effects of laser processing parameters on speed and efficiency were also investigated. This is to explore how to provide industry users the best laser solution for device micro-fabrication with best price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Smart surfaces are a source of innovation in the 21st Century. Potential applications can be found in a wide range of fields where improved optical, mechanical or biological properties can enhance the functions of products. In the last years, a method called Direct Laser Interference Patterning (DLIP) has demonstrated to be capable of fabricating a wide range of periodic surface patterns even with resolution at the nanometer and sub-micrometer scales. This article describes recent advances of the DLIP method to process 2D and 3D parts. Firstly, the possibility to fabricate periodic arrays on metallic substrates with sub-micrometer resolution is shown. After that, different concepts to process three dimensional parts are shown, including the use of Cartesian translational stages as well as an industrial robot arm. Finally, some application examples are described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this study, we will present recent progress in the laser-assisted manufacturing of thermal energy devices that require suppressed thermal transport characteristics yet maintaining other functionalities such as electronic transport or mechanical strength. Examples of such devices to be demonstrated include thermoelectric generator or insulating materials. To this end, it will be shown that an additive manufacturing approaches can be facilitated and improved by unique processing capabilities of lasers in composite level. In order to tailor thermal characteristics in thermal devices, we will mainly investigate the potential of laser heating, curing, selective removal and sintering processes of material systems in the composite level.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We developed a longitudinally excited CO2 laser that produces a short laser pulse with the almost same spike-pulse energy of about 0.8 mJ and the controllable pulse-tail energy of 6.33−23.08 mJ. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance and a spark-gap switch. The dependence of SiO2 glass drilling on the fluence and the number was investigated by four types of short-pulse CO2 lasers. In this work, the effective short laser pulse with the spike pulse energy of 0.8 mJ for SiO2 glass drilling was the laser pulse with the pulse tail energy of 19.88 mJ, and produces the drilling depth per the fluence of 124 μm/J/cm2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, we present an improved graphical user interface for defining single-pass novel shaping techniques on glass processing machines that allows for streamlined process development. This approach offers unique modularity and debugging capability to researchers during the process development phase not usually afforded with similar scripting languages.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The use of a CO2 laser as a heat source became commercially available for optical fiber splicing and component fabrication only in recent years. In addition to long-term trouble-free and low-maintenance heat source operation, laser fusion splicing offers unique benefits for fabricating high-power optical components, as well as for splice reliability. When used as the heating method for fiber splicing, the energy of the CO2 laser beam is efficiently absorbed by the outer layer of the glass, and is then conducted inwards. This heating method is well controlled, and results in a smooth and contamination-free glass surface. Other heating methods, such as arc fusion or resistive heating, may leave tungsten, graphite, or metal oxide deposits on the spliced fiber surface. By contrast, with CO2 laser splicing, the lack of surface irregularities and contamination enables remarkable spliced-fiber strength results, with some strength results nearly within the range of coated fiber breaking strength.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, we summarize our recent research progresses on the understanding, design, fabrication, characterization of various photonic sensors for energy, defense, environmental, biomedical and industry applications. Femtosecond laser processing/ablation of various glass materials (fused silica, doped silica, sapphire, etc.) will be discussed towards the goal of one-step fabrication of novel photonic sensors and new enabling photonic devices. A number of new photonic devices and sensors will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
New concept of EUV radiation power scaling in the intermediate focus of the illumination system is proposed. The multiplex source scheme based on combination of several sources with acceptable level power allows to concentrate EUV light on the total power level of 1kW and more have been developed. The experimental results showed that the power consumption in the double-pulse bi-spectral primary source for EUV lithography can be substantially decrease by replacing pre-amplifiers in power CO2 laser on the SRS converters wavelength 1.06 μm to 10.6 μm while maintaining efficiency of EUV radiation output of illuminated plasma.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.