You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 2016Pattern transfer, self-organized surface nanostructuring, and nanodrilling of sapphire using nanosecond laser irradiation
Nanostructures have a widespread field of applications. The structuring of sapphire assisted by a nanosecond laserinduced self-organized molten molybdenum layer deformation process was studied. At low laser fluence the irradiation of a thin metal layer on dielectric surface results in a melting and nanostructuring of the metal layer and partially of the dielectric surface. Furthermore, a subsequent high laser fluence treatment of the metal nanostructures results in different features: (i) pattern transfer, (ii) self-organized surface nanostructuring, and (iii) nanodrilling. (i) Pattern transfer: The irradiation of the pre-structured metal layer with high laser fluences allows the transfer of the lateral geometry of the metal nanostructures into the dielectric surface. (ii) Self-organized surface nanostructuring: The multi-pulse irradiation of the metal layer/dielectric system with moderate laser fluences results in a selforganized nanostructuring of the dielectric surface. (iii) Nanodrilling: The multi-pulse low laser fluence irradiation of the metal layer results in the formation of metal droplets and a further high fluence irradiation of the laser-generated metal droplets results in a stepwise evaporation of the metal and in a partial evaporation of the dielectric and, finally, in the formation of cone-like holes. The resultant structures were investigated by scanning electron microscopy (SEM).
The alert did not successfully save. Please try again later.
P. Lorenz, J. Zajadazc, M. Ehrhardt, L. Bayer, K. Zimmer, "Pattern transfer, self-organized surface nanostructuring, and nanodrilling of sapphire using nanosecond laser irradiation," Proc. SPIE 9736, Laser-based Micro- and Nanoprocessing X, 97361K (4 March 2016); https://doi.org/10.1117/12.2212122