Comparing the performance effects of different components, such as photodetectors, or protocols, such as forward error correction, in the field is difficult because conditions are constantly changing. On the other hand, laboratory-based turbulence simulators, often using hot plates and fans, do not really simulate the effects of long-range propagation through the atmosphere. We have investigated a different approach. Scintillation has been measured during field tests using FSO terminals by sending a continuous wave beam through the atmosphere. A high dynamic range photodetector was digitized at a 10 KHz rate and files of the intensity variations were saved. Many hours of scintillation data under different environmental conditions and at different sites have been combined into a library of data. A fiber-optic based scintillation playback system was then used in the laboratory to test modems and protocols with the recorded files. This allowed comparisons using the same atmospheric conditions allowing optimization of such parameters as detector dynamic range. It also allowed comparison and optimization of different error correcting protocols. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 1 scholarly publication.
Scintillation
Free space optics
Sensors
Photodetectors
Retroreflectors
Modulation
Fiber optics