Front Matter: Volume 9765
Optical and Electronic Cooling of Solids

Richard I. Epstein
Denis V. Seletskiy
Mansoor Sheik-Bahae

Editors

17–18 February 2016
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 9765
Contents

v Authors

vii Conference Committee

ix Introduction

CRYOGENIC REFRIGERATION IN RARE-EARTH DOPED SYSTEMS

9765 03 Progress in the spectroscopic and thermal studies of Er-doped oxysulfide crystal powders (Invited Paper) [9765-2]

9765 06 Laser cooling performance of Yb³⁺-doped LuLiF₄ crystal (Invited Paper) [9765-5]

THERMOELECTRIC COOLERS

9765 07 Thermoelectric and spin-caloritronic coolers: from basics to recent developments (Keynote Paper) [9765-6]

9765 08 Towards p × n transverse thermoelectrics: extreme anisotropic conduction in bulk doped semiconductor thin films via proton implantation (Invited Paper) [9765-7]

NOVEL ASPECTS IN OPTICAL REFRIGERATION I

9765 0F Realistic modeling of low quantum defect lasers (Invited Paper) [9765-14]

9765 0G Analytical predictions of the temperature profile within semiconductor nanostructures for solid-state laser refrigeration (Invited Paper) [9765-15]

NOVEL ASPECTS IN OPTICAL REFRIGERATION II

9765 0H Spectroscopy and thermalization of dense atomic gases in redistributional laser cooling (Invited Paper) [9765-16]

9765 0J Observation of excitonic super-radiance in quantum well structures and its application for laser cooling of solids (Invited Paper) [9765-18]

APPLICATIONS AND DEVICE CONCEPTS

9765 0L Progress in rare-earth-doped nanocrystalline glass-ceramics for laser cooling (Invited Paper) [9765-20]
Bottle micro-resonator temperature sensors for laser coolers (Invited Paper) [9765-21]

Thermal management and design for optical refrigeration [9765-22]

Raman cooling in silicon photonic crystals [9765-25]

POSTER SESSION

Optical refrigeration of Tm:YLF and Ho:YLF crystals [9765-24]

Non-resonant optical cavity design for optical refrigeration [9765-26]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Albercht, Alexander R., 0N, 0P, 0Q
Bahl, Gaurav, 0O
Balda, Rolindes, 03
Barredo-Zuriarrain, Macarena, 03
Bowman, Steven R., 0F
Chen, Lin, 06
Chen, Yin-Chung, 0O
Christopoulos, Stavros, 0H
Davis, E. James, 0G
Epstein, R. I., 0N, 0Q
Farfan, B. G., 0N, 0Q
Fernández, Joaquín, 03
García-Revilla, Sara, 03
Ghasemkhani, Mohammad R., 0N, 0P, 0Q
Gragossian, Aram, 0P, 0Q
Grayson, M., 08
Hakmeh, Noha, 03
Hassani Nia, Iman, 0J
Heremans, Joseph P., 07
Jin, Hyungyu, 07
Kashyap, Raman, 0L, 0M
Koblmüller, G., 08
Ledemi, Yannick, 0L
Loranger, Sebastien, 0L
Luo, Hao, 06
Melgaard, Seth D., 0P
Merdrignac-Conanec, Odile, 03
Messaddeq, Younes, 0L
Mohseni, Hoorman, 0J
Möller, Dominik, 0H
Moroshkin, Peter, 0H
Nemova, Galina, 0L, 0M
Pauzauskie, Peter J., 0G
Riedl, H., 08
Rostami, Saied, 0P
Sheik-Bahaei, Mansoor, 0N, 0P, 0Q
Shi, Yanling, 06
Smith, Bennett E., 0G
Soares de Lima Filho, Elton, 0L
Symonds, G., 0N, 0Q
Tang, Yang, 08
Tonelli, Mauro, 0P
Venkata Krishnaiah, Kummma, 0L
Weinberg, David, 0J
Weiss, Emily A., 0J
Weitz, Martin, 0H
Weller, Lars, 0H
Wheaton, Skylar, 0J
Yin, Jianping, 06
Zhong, Biao, 06
Zhou, Xuezhe, 0G
Conference Committee

Symposium Chairs
 Jean-Emmanuel Broquin, IMEP-LAHC (France)
 Shibin Jiang, AdValue Photonics, Inc. (United States)

Symposium Co-chairs
 David L. Andrews, University of East Anglia (United Kingdom)
 Alexei L. Glebov, OptiGrate Corporation (United States)

Program Track Chair
 Zameer U. Hasan, Temple University (United States)

Conference Chairs
 Richard I. Epstein, The University of New Mexico (United States)
 Denis V. Seletskiy, Universität Konstanz (Germany)
 Mansoor Sheik-Bahae, The University of New Mexico (United States)

Conference Program Committee
 Daniel A. Bender, Sandia National Laboratories (United States)
 Steven Bowman, U.S. Naval Research Laboratory (United States)
 Tal Eliezer Carmon, Technion-Israel Institute of Technology (Israel)
 Joaquín Fernández, Universidad del País Vasco (Spain)
 Thomas Fraser, Air Force Research Laboratory (United States)
 Zameer U. Hasan, Temple University (United States)
 Raman Kashyap, École Polytechnique de Montréal (Canada)
 Paul D. LeVan, Air Force Research Laboratory (United States)
 Mauro Tonelli, Università di Pisa (Italy)
 Qihua Xiong, Nanyang Technological University (Singapore)

Session Chairs
 1 Cryogenic Refrigeration in Rare-Earth Doped Systems
 Raman Kashyap, École Polytechnique de Montréal (Canada)

 2 Thermoelectric Coolers
 Steven R. Bowman, U.S. Naval Research Laboratory (United States)

 3 Laser Cooling in Semiconductors
 Denis V. Seletskiy, Universität Konstanz (Germany)
4 Novel Aspects in Optical Refrigeration I
Qihua Xiong, Nanyang Technological University (Singapore)

5 Novel Aspects in Optical Refrigeration II
Qihua Xiong, Nanyang Technological University (Singapore)

6 Applications and Device Concepts
Aram Gragossian, The University of New Mexico (United States)
Introduction

For the last 8 years, this conference was named Laser Refrigeration of Solids. In this period, the field has witnessed steady growth and we are now standing at the dawn of a new era which promises prototypes of laser coolers for real world applications. While laser cooling remains the only viable solid-state cooler technology to reach cryogenic temperatures, the community of thermoelectrics has been rapidly advancing in parallel. The year 2016 marks the first year of this conference under a new name, “Optical and Electronic Cooling of Solids,” reflecting the fact that the meeting is expanding its coverage to include all solid-state bulk cooling technologies. We hope to see stronger interactions and development of device integration ideas between the two disciplines in the future.

This year’s conference attracted an exciting collection of 25 invited, contributed, and poster talks showcasing advancements in the field, ranging from expanding scientific understanding of laser cooling and thermoelectrics to novel applications. The papers discussed novel results categorized in six sessions: Cryogenic Refrigeration in Rare-Earth-Doped Systems, Thermoelectric Coolers, Laser Cooling in Semiconductors, Novel Aspects in Optical Refrigeration I & II, and Applications and Device Concepts. The reported progress continued to expand the database of rare-earth doped cooling materials, in total comprised of ytterbium, thulium, erbium, holmium, and dysprosium active dopant ions in a variety of crystal and glass hosts, both in bulk and nanocrystal geometries. On the other hand, material science and advanced characterization methods have allowed for improvement of the quality of cooling solids to the point that operating temperatures of 90 Kelvin are now being reported by the University of New Mexico team. Liquid nitrogen temperatures may be within reach in the near future, and this progress motivates the multitude of advanced applications, ranging from basic science ones to space-borne sensor systems. Many of these applications were presented this year in a number of invited and contributed talks.

At the beginning of the session on thermoelectric coolers, the attendees enjoyed a comprehensive introduction to the field of Peltier and spin-caloritronics coolers given by Prof. Heremans, followed by interesting talks discussing novel advances in the field.

In parallel with the developments in cooling of insulator-based crystals, the field has witnessed active theoretical and experimental advances in optical refrigeration of semiconductors. First demonstrations of laser cooling of II-VI materials and record-breaking external quantum efficiency in III-V semiconductor heterostructures have marked milestone achievements in this direction a few years ago. This year’s meeting elaborated on new strategies for increasing performance in laser cooling of semiconductors together with development of advanced methods of high precision characterization of materials.
Finally, we would like to take this opportunity to thank all members of the program committee and the SPIE staff for their help in organizing another very successful Optical and Electronic Cooling of Solids conference. Thanks to all the speakers, presenters, and participants for sharing their novel developments and new insights as well as active discussions, making 2016 another successful year for our conference.

Richard I. Epstein
Denis V. Seletskiy
Mansoor Sheik-Bahae