4 April 2016 DSA via hole shrink for advanced node applications
Author Affiliations +
Abstract
Directed self-assembly (DSA) of block copolymers (BCPs) has become a promising patterning technique for 7nm node hole shrink process due to its material-controlled CD uniformity and process simplicity.[1] For such application, cylinder-forming BCP system has been extensively investigated compared to its counterpart, lamella-forming system, mainly because cylindrical BCPs will form multiple vias in non-circular guiding patterns (GPs), which is considered to be closer to technological needs.[2-5] This technological need to generate multiple DSA domains in a bar-shape GP originated from the resolution limit of lithography, i.e. those vias placed too close to each other will merge and short the circuit. In practice, multiple patterning and self-aligned via (SAV) processes have been implemented in semiconductor manufacturing to address this resolution issue.[6] The former approach separates one pattern layer with unresolvable dense features into several layers with resolvable features, while the latter approach simply utilizes the superposition of via bars and the pre-defined metal trench patterns in a thin hard mask layer to resolve individual vias, as illustrated in Fig 1 (upper). With proper design, using DSA to generate via bars with the SAV process could provide another approach to address the resolution issue.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Cheng Chi, Cheng Chi, Chi-Chun Liu, Chi-Chun Liu, Luciana Meli, Luciana Meli, Kristin Schmidt, Kristin Schmidt, Yongan Xu, Yongan Xu, Ekmini Anuja DeSilva, Ekmini Anuja DeSilva, Martha Sanchez, Martha Sanchez, Richard Farrell, Richard Farrell, Hongyun Cottle, Hongyun Cottle, Daiji Kawamura, Daiji Kawamura, Lovejeet Singh, Lovejeet Singh, Tsuyoshi Furukawa, Tsuyoshi Furukawa, Kafai Lai, Kafai Lai, Jed W. Pitera, Jed W. Pitera, Daniel Sanders, Daniel Sanders, David R. Hetzer, David R. Hetzer, Andrew Metz, Andrew Metz, Nelson Felix, Nelson Felix, John Arnold, John Arnold, Matthew Colburn, Matthew Colburn, "DSA via hole shrink for advanced node applications", Proc. SPIE 9777, Alternative Lithographic Technologies VIII, 97770L (4 April 2016); doi: 10.1117/12.2219706; https://doi.org/10.1117/12.2219706
PROCEEDINGS
9 PAGES


SHARE
Back to Top