You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 March 2016New resist materials based on polyacetal main chain scission
The main target of the current work was to develop new polymeric materials for lithographic applications, the main chain of which is cleaved under the influence of photogenerated acid. Acetals have been chosen as functional groups in the main polymer chain since they can be cleaved in the presence of an acid while they remain untouched in alkaline ambient. The synthesized polymers were designed to bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behaviour). The synthesis was carried out via polyaddition of a vinyloxyl compound and a diol compound to produce novel polymers with acetal repeating units in their backbone. We chose polyaromatic hydrocarbons as diol units to achieve increased etch resistance. In addition, the polyaromatic units allow exposure at 193 nm as well, where the absorption of simple aromatics is prohibitively high. Good solubility and increased surface adhesion were achieved by choosing cycloaliphatic vinyloxyl ethers as the second component for the polyaddition. In addition, the same route can be followed to incorporate chromophores that can tune the resist absorbance in different spectral regions. Furthermore, single component systems can be designed following this approach by the incorporation of suitable PAGs in the main chain.
The alert did not successfully save. Please try again later.
Theodoros Manouras, Antonis Olziersky, Panagiotis Argitis, "New resist materials based on polyacetal main chain scission," Proc. SPIE 9779, Advances in Patterning Materials and Processes XXXIII, 97791P (21 March 2016); https://doi.org/10.1117/12.2230398