You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 March 2016Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches
Computer-aided detection (CAD) has been used in screening mammography for many years and is likely to be utilized for digital breast tomosynthesis (DBT). Higher detection performance is desirable as it may have an impact on radiologist's decisions and clinical outcomes. Recently the algorithms based on deep convolutional architectures have been shown to achieve state of the art performance in object classification and detection. Similarly, we trained a deep convolutional neural network directly on patches sampled from two-dimensional mammography and reconstructed DBT volumes and compared its performance to a conventional CAD algorithm that is based on computation and classification of hand-engineered features. The detection performance was evaluated on the independent test set of 344 DBT reconstructions (GE SenoClaire 3D, iterative reconstruction algorithm) containing 328 suspicious and 115 malignant soft tissue densities including masses and architectural distortions. Detection sensitivity was measured on a region of interest (ROI) basis at the rate of five detection marks per volume. Moving from conventional to deep learning approach resulted in increase of ROI sensitivity from 0:832 ± 0:040 to 0:893 ± 0:033 for suspicious ROIs; and from 0:852 ± 0:065 to 0:930 ± 0:046 for malignant ROIs. These results indicate the high utility of deep feature learning in the analysis of DBT data and high potential of the method for broader medical image analysis tasks.
The alert did not successfully save. Please try again later.
Sergei V. Fotin, Yin Yin, Hrishikesh Haldankar, Jeffrey W. Hoffmeister M.D., Senthil Periaswamy, "Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches," Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, 97850X (24 March 2016); https://doi.org/10.1117/12.2217045