24 March 2016 A computer-aided diagnosis system to detect pathologies in temporal subtraction images of chest radiographs
Author Affiliations +
Abstract
Radiologists often compare sequential radiographs to identify areas of pathologic change; however, this process is prone to error, as human anatomy can obscure the regions of change, causing the radiologists to overlook pathology. Temporal subtraction (TS) images can provide enhanced visualization of regions of change in sequential radiographs and allow radiologists to better detect areas of change in radiographs. Not all areas of change shown in TS images, however, are actual pathology. The purpose of this study was to create a computer-aided diagnostic (CAD) system that identifies which regions of change are caused by pathology and which are caused by misregistration of the radiographs used to create the TS image. The dataset used in this study contained 120 images with 74 pathologic regions on 54 images outlined by an experienced radiologist. High and low (“light” and “dark”) gray-level candidate regions were extracted from the images using gray-level thresholding. Then, sampling techniques were used to address the class imbalance problem between “true” and “false” candidate regions. Next, the datasets of light candidate regions, dark candidate regions, and the combined set of light and dark candidate regions were used as training and testing data for classifiers by using five-fold cross validation. Of the classifiers tested (support vector machines, discriminant analyses, logistic regression, and k-nearest neighbors), the support vector machine on the combined candidates using synthetic minority oversampling technique (SMOTE) performed best with an area under the receiver operating characteristic curve value of 0.85, a sensitivity of 85%, and a specificity of 84%.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jared Looper, Jared Looper, Melanie Harrison, Melanie Harrison, Samuel G. Armato, Samuel G. Armato, } "A computer-aided diagnosis system to detect pathologies in temporal subtraction images of chest radiographs", Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, 978539 (24 March 2016); doi: 10.1117/12.2217105; https://doi.org/10.1117/12.2217105
PROCEEDINGS
7 PAGES


SHARE
Back to Top