METHODS: We propose a method that uses simulation and visual verification to design continuum tools that are patient and procedure specific. Our software module utilizes pre-operative scans and virtual threedimensional (3D) patient models to intuitively aid instrument design. The user specifies basic tool parameters and the parameterized tools and trocar are modeled within the virtual patient. By selecting and dragging the instrument models, the tools are instantly reshaped and repositioned. The tool geometry and surgical entry points are then returned as outputs to undergo optimization. We have completed an initial validation of the software by comparing a simulation of a physical instrument’s reachability to the corresponding virtual design. RESULTS AND CONCLUSION: The software was assessed qualitatively by two neurosurgeons, who design tools for an intraventricular endoscopic procedure. Further, validation experiments comparing the design of a virtual instrument to a physical tool demonstrate that the software module functions correctly. Thus, our platform permits user-friendly, application specific design of continuum instruments. These instruments will give surgeons much more flexibility in developing future minimally invasive procedures. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 1 scholarly publication and 1 patent.
3D modeling
Surgery
Visualization
Data modeling
Instrument modeling
3D acquisition
Skull