18 March 2016 Feasibility of tracked electrodes for use in epilepsy surgery
Author Affiliations +
Abstract
Subdural electrode recording is commonly used to evaluate intractable epilepsy. In order to accurately record electrical activity responsible for seizure, electrodes must be positioned precisely near targets of interest, often indicated preoperatively through imaging studies. To achieve accurate placement, a large craniotomy is used to expose the brain surface. With the intent of limiting the size and improving the location of craniotomy for electrode placement, we examined magnetic tracking for localization of electrode strips. Commercially available electrode strips were attached to specialized magnetic tracking sensors developed by Medtronic plc. In a rigid phantom we evaluated the strips to determine the accuracy of electrode placement on targets. We further conducted an animal study to evaluate the impact of magnetic field interference during data collection. The measured distance between the physical fiducial and lead coil of the electrode strip was 1.32 ± 1.03mm in the phantom experiments. The tracking system induces a very strong signal in the electrodes in the Very Low Frequency, an International Telecommunication Union (ITU) designated frequency band, from 3 kHz to 30 kHz. The results of the animal experiment demonstrated both tracking feasibility and data collection.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David Holmes, Benjamin Brinkmann, Dennis Hanson, Gregory Worrell, Richard Robb, Leslie Holton, "Feasibility of tracked electrodes for use in epilepsy surgery", Proc. SPIE 9786, Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling, 97862M (18 March 2016); doi: 10.1117/12.2217859; https://doi.org/10.1117/12.2217859
PROCEEDINGS
8 PAGES


SHARE
Back to Top