You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 April 2016Internal structure analysis of particle-double network gels used in a gel organ replica
In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in
medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D
printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional
molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a
real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee
surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure
of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types
of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network
structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In
the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal
structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.
The alert did not successfully save. Please try again later.
Mei Abe, Masanori Arai, Azusa Saito, Kazuyuki Sakai, Masaru Kawakami, Hidemitsu Furukawa, "Internal structure analysis of particle-double network gels used in a gel organ replica," Proc. SPIE 9802, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2016, 98020I (16 April 2016); https://doi.org/10.1117/12.2218235