Translator Disclaimer
1 April 2016 Fatigue study and improve reliability of cantilever type micro piezoelectric energy harvesters reinforced with flexible adhesive conductive tape
Author Affiliations +
Cantilever type piezoelectric energy harvester (PEH) is widely adopted in the design of vibration energy harvesters because of simple, effective and easy to fabricate. When the PEH is working under excitation of continuous vibration sources, like mounting on motors, reliability and durability is a major concern. The failure mode and fatigue issues will be important design considerations in field applications. Since the largest strain of a cantilever structure is located in the clamping position of fixed end, the location is therefore the weakest point of the structure and the hot zone of mechanical cracks. The failure mode due to fatigue under long time excitation of vibration sources is typically continuously developing small cracks on the piezoelectric PZT films till tearing the surface electrodes and caused open circuit to the output circuitry. Therefore, extending the lifetime with minimize the surface electrodes cracking becomes a key point for field applications.

Previously, we focused on the output performance of PEH. At PowerMEMS 2014 [1], we presented a high performance PEH based on PZT thin films fabricated with a homemade PZT deposition equipment on stainless steel substrates. We confirmed that the stainless steel based PEH can generate better output power than silicon based devices under the same vibration excitation levels, and also the stainless based PEH can have longer lifetime when excited at higher vibration levels due to better mechanical strength. In this study, we tried to further reinforce the PEH with a conductive adhesive tape sticking on the surface electrode near the clamping position. We investigated the change of failure mode and mechanical behaviors, including the frequency bandwidth and non-linearity of the piezoelectric energy harvester.

The PEH devices was mounted on a shaker for long time testing with vibration frequency set around 120Hz at 0.5g, 0.6g, and 0.7g acceleration vibration levels. The electrodes of the PEH device were cracked after 13 million cycles under 0.5g and 1 million cycles under 0.6g. The PEH has significant output power decreasing after the electrode is cracked and before being fully open circuit. The cracks of stainless steel substrate was also found after 1 million cycles under 0.7g vibration. For the device reinforced with conductive adhesive tape, we can see a steady output without degradation extended to more than 1.5 million cycles under 0.7g vibration. The other interesting finding in this study is with the added damping after adhering the conductive tape, the frequency bandwidth increased from 1.5Hz to 4Hz under 0.5g vibration level while the resonance frequency increased from 105Hz to 128Hz. Moreover, the reinforced devices have much better stability and linearity performance compared with the original devices. All the experimental details and discussion of the flexible conductive adhesive tape reinforced PEH will all be detailed in this paper.
Conference Presentation
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
T. K. Lin, Y. C. Hsieh, C. T. Chen, J. J. Chen, and W. J. Wu "Fatigue study and improve reliability of cantilever type micro piezoelectric energy harvesters reinforced with flexible adhesive conductive tape", Proc. SPIE 9806, Smart Materials and Nondestructive Evaluation for Energy Systems 2016, 98060Y (1 April 2016);

Back to Top