You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 December 2015A hybrid features based image matching algorithm
In this paper, we present a novel image matching method to find the correspondences between two sets of image interest points. The proposed method is based on a revised third-order tensor graph matching method, and introduces an energy function that takes four kinds of energy term into account. The third-order tensor method can hardly deal with the situation that the number of interest points is huge. To deal with this problem, we use a potential matching set and a vote mechanism to decompose the matching task into several sub-tasks. Moreover, the third-order tensor method sometimes could only find a local optimum solution. Thus we use a cluster method to divide the feature points into some groups and only sample feature triangles between different groups, which could make the algorithm to find the global optimum solution much easier. Experiments on different image databases could prove that our new method would obtain correct matching results with relatively high efficiency.
The alert did not successfully save. Please try again later.
Zhenbiao Tu, Tao Lin, Xiao Sun, Hao Dou, Delie Ming, "A hybrid features based image matching algorithm," Proc. SPIE 9813, MIPPR 2015: Pattern Recognition and Computer Vision, 98130H (14 December 2015); https://doi.org/10.1117/12.2205426