You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 December 2015An enhanced MIML algorithm for natural scene image classification
The multi-instance multi-label (MIML) learning is a learning framework where each example is described by a bag of instances and corresponding to a set of labels. In some studies, the algorithms are applied to natural scene image classification and have achieved satisfied performance. We design a MIML algorithm based on RBF neural network for the natural scene image classification. In the framework, we compare classification accuracy based on the existing definitions of bag distance: maximum Hausdorff, minimum Hausdorff and average Hausdorff. Although the accuracy of average Hausdorff bag distance is the highest, we find average Hausdorff bag distance to weaken the role of the minimum distance between the instances in the two bags. So we redefine the average Hausdorff bag distance by introducing an adaptive adjustment coefficient, and it can change according to the minimum distance between the instances in the two bags. Finally, the experimental results show that the enhanced algorithm has a better result than the original algorithm.