You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 December 2015Layered HEVC/H.265 video transmission scheme based on hierarchical QAM optimization
High Efficiency Video Coding (HEVC) is the state-of-art video compression standard which fully support scalability features and is able to generate layered video streams with unequal importance. Unfortunately, when the base layer (BL) which is more importance to the stream is lost during the transmission, the enhancement layer (EL) based on the base layer must be discarded by receiver. Obviously, using the same transmittal strategies for BL and EL is unreasonable. This paper proposed an unequal error protection (UEP) system using different hierarchical amplitude modulation (HQAM). The BL data with high priority are mapped into the most reliable HQAM mode and the EL data with low priority are mapped into HQAM mode with fast transmission efficiency. Simulations on scalable HEVC codec show that the proposed optimized video transmission system is more attractive than the traditional equal error protection (EEP) scheme because it effectively balances the transmission efficiency and reconstruction video quality.
The alert did not successfully save. Please try again later.
Weidong Feng, Cheng Zhou, Chengyi Xiong, Shaobo Chen, Junxi Wang, "Layered HEVC/H.265 video transmission scheme based on hierarchical QAM optimization," Proc. SPIE 9815, MIPPR 2015: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, 98151D (14 December 2015); https://doi.org/10.1117/12.2209556