20 May 2016 High performance type II superlattice focal plane array with 6μm cutoff wavelength
Author Affiliations +
Abstract
The cutoff wavelength of 6μm is preferable for the full usage of the atmospheric window in the mid-wavelength region. An InAs/GaSb type-II superlattice (T2SL) is the only known infrared material that has a theoretically predicted high performance and also the cutoff wavelength can be easily controlled by changing the thickness of InAs and GaSb. In this study, we used a p-i-n structure with InAs/GaSb T2SL absorber and also barrier layers which was grown on a Tedoped GaSb substrate by molecular beam epitaxy. A mesa-type focal plane array (FPA) with 320×256 pixels and 30μm pixel pitch was fabricated. Mesa structures were formed by inductively coupled plasma reactive ion etching with halogen gas mixture. Prior to the deposition of the SiO2 passivation film, N2 plasma treatment was applied for reducing the dark currents. Measured dark current of the sensor was 4x10-7A/cm2 at temperature of 77K and reverse bias of -20mV. The quantum efficiency was 0.35 and the detectivity was 4.1x1012cm/Hz1/2W. The sensor array was hybridized with the commercially available readout integrated circuit using indium bumps. The noise equivalent differential temperature measured with F/2.3 optics was 31mK at 77K. The operability was over 99%. This FPA is suitable for full usage of the atmospheric window in the mid-wavelength region.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kouhei Miura, Kouhei Miura, Ken-ichi Machinaga, Ken-ichi Machinaga, Sundararajan Balasekaran, Sundararajan Balasekaran, Takahiko Kawahara, Takahiko Kawahara, Masaki Migita, Masaki Migita, Hiroshi Inada, Hiroshi Inada, Yasuhiro Iguchi, Yasuhiro Iguchi, Michito Sakai, Michito Sakai, Junpei Murooka, Junpei Murooka, Haruyoshi Katayama, Haruyoshi Katayama, Masafumi Kimata, Masafumi Kimata, "High performance type II superlattice focal plane array with 6μm cutoff wavelength", Proc. SPIE 9819, Infrared Technology and Applications XLII, 98190V (20 May 2016); doi: 10.1117/12.2223634; https://doi.org/10.1117/12.2223634
PROCEEDINGS
6 PAGES


SHARE
Back to Top