PROCEEDINGS VOLUME 9822
SPIE DEFENSE + SECURITY | 17-21 APRIL 2016
Advanced Optics for Defense Applications: UV through LWIR
IN THIS VOLUME

9 Sessions, 39 Papers, 0 Presentations
Materials  (6)
Fabrication  (5)
GRIN I  (4)
GRIN II  (4)
Proceedings Volume 9822 is from: Logo
SPIE DEFENSE + SECURITY
17-21 April 2016
Baltimore, Maryland, United States
Front Matter: Volume 9822
Proc. SPIE 9822, Front Matter: Volume 9822, 982201 (18 July 2016); https://doi.org/10.1117/12.2244400
Materials
Proc. SPIE 9822, Evaluation of chalcogenide glasses for multispectral imaging in the visible, SWIR and LWIR spectral regions, 982202 (17 May 2016); https://doi.org/10.1117/12.2222900
Proc. SPIE 9822, Manufacturing of transparent ZnS ceramics by powders sintering, 982203 (20 May 2016); https://doi.org/10.1117/12.2223087
Proc. SPIE 9822, Rugged spinel optics for space based imaging systems, 982204 (17 May 2016); https://doi.org/10.1117/12.2224144
Proc. SPIE 9822, Engineering novel infrared glass ceramics for advanced optical solutions, 982205 (17 May 2016); https://doi.org/10.1117/12.2224239
Proc. SPIE 9822, Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses, 982207 (17 May 2016); https://doi.org/10.1117/12.2229056
Proc. SPIE 9822, High accuracy refractive index measurement system for germanium and silicon using the channelled spectrum method in the range of 3 to 15 μm, 982208 (17 May 2016); https://doi.org/10.1117/12.2238662
Fabrication
Proc. SPIE 9822, Chalcogenide material strengthening through the lens molding process, 982209 (17 May 2016); https://doi.org/10.1117/12.2223271
Proc. SPIE 9822, Applicability of an annealing coefficient for precision glass molding of As40Se60, 98220A (17 May 2016); https://doi.org/10.1117/12.2224193
Proc. SPIE 9822, Molded, wafer level optics for long wave infra-red applications, 98220B (17 May 2016); https://doi.org/10.1117/12.2223872
Proc. SPIE 9822, Optimum selection of high performance mirror substrates for diamond finishing, 98220C (17 May 2016); https://doi.org/10.1117/12.2231326
Optical Design and Analysis I
Proc. SPIE 9822, Phase mask for infrared lens athermalization: design considerations, 98220F (17 May 2016); https://doi.org/10.1117/12.2222154
Proc. SPIE 9822, Evaluate depth of field limits of fixed focus lens arrangements in thermal infrared, 98220G (17 May 2016); https://doi.org/10.1117/12.2223559
Proc. SPIE 9822, Characterization of the image quality of a wide angle MWIR f-theta objective lens by means of pixel contrast, 98220H (17 May 2016); https://doi.org/10.1117/12.2223812
Proc. SPIE 9822, Experimental verification of the minimum number of diffractive zones for effective chromatic correction in the LWIR, 98220I (17 May 2016); https://doi.org/10.1117/12.2223755
Optical Design and Analysis II
Proc. SPIE 9822, Design method for a laser line beam shaper of a general 1D angular power distribution, 98220J (17 May 2016); https://doi.org/10.1117/12.2225423
Proc. SPIE 9822, Electronic eyebox for weapon sights, 98220K (17 May 2016); https://doi.org/10.1117/12.2228782
Proc. SPIE 9822, Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR, 98220L (17 May 2016); https://doi.org/10.1117/12.2223589
Proc. SPIE 9822, Novel silicon lenses for long-wave infrared imaging, 98220M (17 May 2016); https://doi.org/10.1117/12.2225189
Proc. SPIE 9822, Expanded IR glass map for multispectral optics designs, 98220N (17 May 2016); https://doi.org/10.1117/12.2224130
Proc. SPIE 9822, Computing the PSF with high-resolution reconstruction technique, 98220O (17 May 2016); https://doi.org/10.1117/12.2220283
GRIN I
Proc. SPIE 9822, Advanced gradient-index lens design tools to maximize system performance and reduce SWaP, 98220P (17 May 2016); https://doi.org/10.1117/12.2223040
Proc. SPIE 9822, Materials figure of merit for achromatic gradient index (GRIN) optics, 98220Q (17 May 2016); https://doi.org/10.1117/12.2224105
Proc. SPIE 9822, IR-GRIN optics for imaging, 98220R (17 May 2016); https://doi.org/10.1117/12.2224094
Proc. SPIE 9822, Athermal achromat lens enabled by polymer gradient index optics, 98220S (17 May 2016); https://doi.org/10.1117/12.2224124
GRIN II
Proc. SPIE 9822, Transformation optics relay lens design for imaging from a curved to a flat surface, 98220U (17 May 2016); https://doi.org/10.1117/12.2228123
Proc. SPIE 9822, ALON GRIN optics for visible-MWIR applications, 98220V (17 May 2016); https://doi.org/10.1117/12.2224961
Proc. SPIE 9822, Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles, 98220W (17 May 2016); https://doi.org/10.1117/12.2223775
Proc. SPIE 9822, An analytical study of thermal invariance of polymeric nanolayer gradient index optical components, 98220X (17 May 2016); https://doi.org/10.1117/12.2222886
Coatings and Filters
Proc. SPIE 9822, Low-loss crystalline coatings for the near- and mid-infrared, 98220Y (19 May 2016); https://doi.org/10.1117/12.2234740
Proc. SPIE 9822, HfO2/SiO2 multilayer based reflective and transmissive optics from the IR to the UV, 98220Z (17 May 2016); https://doi.org/10.1117/12.2219752
Proc. SPIE 9822, Ultra-narrow bandpass filters for infrared applications with improved angle of incidence performance, 982211 (17 May 2016); https://doi.org/10.1117/12.2225113
Proc. SPIE 9822, Acousto-optic tunable filter as a notch filter, 982212 (17 May 2016); https://doi.org/10.1117/12.2224238
Proc. SPIE 9822, New counter-countermeasure techniques for laser anti-dazzling spectacles, 982213 (17 May 2016); https://doi.org/10.1117/12.2230451
Optical Design and Analysis III
Proc. SPIE 9822, Exploring the imaging properties of thin lenses for cryogenic infrared cameras, 982214 (17 May 2016); https://doi.org/10.1117/12.2223588
Proc. SPIE 9822, The first order solutions for two configurations of discrete zoom lenses, 982215 (17 May 2016); https://doi.org/10.1117/12.2235793
Proc. SPIE 9822, Foveated optics, 982216 (17 May 2016); https://doi.org/10.1117/12.2231328
Back to Top