You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2016Temperature-emissivity separation for LWIR sensing using MCMC
Signal processing for long-wave infrared (LWIR) sensing is made complicated by unknown surface temperatures in a scene which impact measured radiance through temperature-dependent black-body radiation of in-scene objects. The unknown radiation levels give rise to the temperature-emissivity separation (TES) problem describing the intrinsic ambiguity between an object’s temperature and emissivity. In this paper we present a novel Bayesian TES algorithm that produces a probabilistic posterior estimate of a material’s unknown temperature and emissivity. The statistical uncertainty characterization provided by the algorithm is important for subsequent signal processing tasks such as classification and sensor fusion. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and exploits conditional linearity to achieve efficient block-wise Gibbs sampling for rapid inference. In contrast to existing work, the algorithm optimally incorporates prior knowledge about inscene materials via Bayesian priors which may optionally be learned using training data and a material database. Examples demonstrate up to an order of magnitude reduction in error compared to classical filter-based TES methods.
Joshua N. Ash andJoseph Meola
"Temperature-emissivity separation for LWIR sensing using MCMC", Proc. SPIE 9840, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, 98401O (17 May 2016); https://doi.org/10.1117/12.2223263
The alert did not successfully save. Please try again later.
Joshua N. Ash, Joseph Meola, "Temperature-emissivity separation for LWIR sensing using MCMC," Proc. SPIE 9840, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, 98401O (17 May 2016); https://doi.org/10.1117/12.2223263