20 April 2016 Considerations for the extension of coherent optical processors into the quantum computing regime
Author Affiliations +
Previously we have examined the similarities of the quantum Fourier transform to the classical coherent optical implementation of the Fourier transform (R. Young et al, Proc SPIE Vol 87480, 874806-1, -11). In this paper, we further consider how superposition states can be generated on coherent optical wave fronts, potentially allowing coherent optical processing hardware architectures to be extended into the quantum computing regime. In particular, we propose placing the pixels of a Spatial Light Modulator (SLM) individually in a binary superposition state and illuminating them with a coherent wave front from a conventional (but low intensity) laser source in order to make a so-called ‘interaction free’ measurement. In this way, the quantum object, i.e. the individual pixels of the SLM in their superposition states, and the illuminating wavefront would become entangled. We show that if this were possible, it would allow the extension of coherent processing architectures into the quantum computing regime and we give an example of such a processor configured to recover one of a known set of images encrypted using the well-known coherent optical processing technique of employing a random Fourier plane phase encryption mask which classically requires knowledge of the corresponding phase conjugate key to decrypt the image. A quantum optical computer would allow interrogation of all possible phase masks in parallel and so immediate decryption.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Rupert C. D. Young, Rupert C. D. Young, Philip M. Birch, Philip M. Birch, Chris R. Chatwin, Chris R. Chatwin, "Considerations for the extension of coherent optical processors into the quantum computing regime", Proc. SPIE 9845, Optical Pattern Recognition XXVII, 98450K (20 April 2016); doi: 10.1117/12.2220396; https://doi.org/10.1117/12.2220396

Back to Top