PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 9873, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this work we argue that black hole evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete. We present an analytical formulation of the recent one-shot decoupling model that was numerically analyzed in Bradler and Adami Phys. Rev. Lett. 116, 101301 (2016) [arXiv:1505.0284]. We compute the resulting "Page Information" curves, which describe the rate at which information escapes form the black hole as it evaporates, for the reduced density matrices for the evaporating black hole internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. The present work reviews and attempts to elucidate the trilinear Hamiltonian models for black hole evaporation/particle production recently investigated by the authors in Class. Quant. Grav 32, 075010 (2015) [arXiv:1408.4491] and Class. Quant. Grav 33, 015005 (2016) [arXiv:1507.00429].
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Spontaneous parametric downconversion (SPDC) using periodically poled nonlinear optical crystals under the quasiphase- matching condition has found wide use in quantum optics. High efficiencies and good coupling to single-mode fibers resulted from using channel waveguides in crystals. It is often desirable to have a very narrow bandwidth for the signal and idler photons, but under the typical operating conditions, phase matching dictates the bandwidth of the SPDC to be of the order of <1 nm. This occurs because the co-propagating signal and idler photons are entangled, and an increase of the signal wave-vector is compensated by a decrease of the idler wave-vector. One way to reduce the bandwidth is by forming either external or internal cavities. Additionally, bandwidth reduction is possible without cavities when the signal and idler are counter-propagating, and the changes in the wave-vector with frequency are additive. To accomplish this a domain inversion on the wavelength scale is required. In this work, we experimentally demonstrate SPDC in one-dimensional KTP-based waveguides with sub-micron poling for forward and backward interactions. Some of the spectral features of the generated light are accounted for by mode coupling theory in periodically poled waveguides but other features are as yet not explained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Presented here are results on a silicon ring resonator photon pair source with a high heralding efficiency. Previous ring resonator sources suffered from an effective 50% loss because, in order to generate the photons, the pump must be able to couple into the resonator which is an effective loss channel. However, in practice the optical loss of the pump can be traded off for a dramatic increase in heralding efficiency. This research found theoretically that the heralding efficiency should increase by a factor of ∼ 3:75 with a factor of 10 increase in the required pump power. This was demonstrated experimentally by varying the separation (gap) between the input waveguide and the ring while maintaining a constant drop port gap. The ring (R = 18:5μm, W = 500nm, and H = 220nm) was pumped by a tunable laser (λ ≈ 1550nm). The non-degenerate photons, produced via spontaneous four wave mixing, exited the ring and were coupled to fiber upon which they were filtered symmetrically about the pump. Coincidence counts were collected for all possible photon path combinations (through and drop port) and the ratio of the drop port coincidences to the sum of the drop port and cross term coincidences (one photon from the drop port and one from the through port) was calculated. With a 350nm pump waveguide gap (2:33 times larger than the drop port gap) we confirmed our theoretical predictions, with an observed improvement in heralding efficiency by a factor of ∼ 2:61 (96:7% of correlated photons coupled out of the drop port). These results will enable increased photon flux integrated photon sources which can be utilized for high performance quantum computing and communication systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We propose the Gaussian quadrature inference (GQI) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The GQI framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. GQI utilizes the fundamentals of regularization theory and statistical information processing. We characterize GQI for multicarrier CVQKD, and define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We demonstrate the results through the adaptive multicarrier quadrature division (AMQD) scheme. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of GQI. We prove the secret key rate formulas for a multiple access multicarrier CVQKD via the AMQD-MQA (multiuser quadrature allocation) scheme. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We describe an optical configuration that is predicted to exhibit the behavior described by Popper in his challenge to conventional quantum mechanics. Popper rejected this behavior on the grounds that it was unphysical because it relied on observer knowledge as a causative agent. We offer an interpretation in which the behavior arises simply out of the mode properties of an entangled system. In this interpretation the observer knowledge reveals in which mode an excitation occurs, but does not affect future behavior as asserted by Popper. We also discuss the relation of our system to the quantum eraser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Non-degenerate frequency entanglement has been reported in several recent experiments, since its original observation with Spontaneous Parametric Down-conversion. We report on a configuration based on a Lyot plate, which overcomes shortcomings of prior work by avoiding post-selection and state projection losses. This makes the process suitable, in principle, for use in efficient QKD protocols based on photon pairs entangled in frequency at remote locations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect heterogeneous network devices. We simulate the functional topology of a multi-node quantum network that uses programmable network principles to manage quantum metadata for protocols such as teleportation, superdense coding, and quantum key distribution. We first show how the OpenFlow protocol can manage the quantum metadata needed to control the quantum channel. We then use numerical simulation to demonstrate robust programmability of a quantum switch via the OpenFlow network controller while executing an application of superdense coding. We describe the software framework implemented to carry out these simulations and we discuss near-term efforts to realize these applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A summary of number structure scaling is followed by a description of the effects of number scaling in nonrelativistic quantum mechanics. The description extends earlier work to include the effects on the states of two or more interacting particles. Emphasis is placed on the effects on entangled states. The resulting scaling field is generalized to describe the effects on these states. It is also seen that one can use fiber bundles with fibers associated with single locations of the underlying space to describe the effects of scaling on arbitrary numbers of particles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper is an introduction to relationships between topology, quantum computing and the properties of fermions. In particular we study the remarkable unitary braid group representations associated with Majorana fermions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The stochastic nature of quantum communication protocols naturally lends itself for expression via probabilistic logic languages. In this work we describe quantized computation using Horn clauses and base the semantics on quantum probability. Turing computable Horn clauses are very convenient to work with and the formalism can be extended to general form of first order languages. Towards this end we build a Hilbert space of H-interpretations and a corresponding non commutative von Neumann algebra of bounded linear operators. We demonstrate the expressive power of the language by casting quantum communication protocols as Horn clauses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The basic equations of physics involve a time variable t and are invariant under the transformation t → −t. This invariance at first sight appears to impose time reversibility as a principle of physics, in conflict with thermodynamics. But equations written on the blackboard are not the whole story in physics. In prior work we sharpened a distinction obscured in today’s theoretical physics, the distinction between obtaining evidence from experiments on the laboratory bench and explaining that evidence in mathematical symbols on the blackboard. The sharp distinction rests on a proof within the mathematics of quantum theory that no amount of evidence, represented in quantum theory in terms of probabilities, can uniquely determine its explanation in terms of wave functions and linear operators. Building on the proof we show here a role in physics for unpredictable symbol-handling agents acting both at the blackboard and at the workbench, communicating back and forth by means of transmitted symbols. Because of their unpredictability, symbol-handling agents introduce a heretofore overlooked source of irreversibility into physics, even when the equations they write on the blackboard are invariant under t → −t. Widening the scope of descriptions admissible to physics to include the agents and the symbols that link theory to experiments opens up a new source of time-irreversibility in physics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We study a new methodology for quantum walk based algorithms. Different from the passive quantum walk, in which a walker is guided by a quantum walk procedure, the new framework that we developed allows the walker to move by an adiabatic procedure of quantum evolution, as an active way. The use of this active quantum walk is helpful to develop new quantum walk based searching and optimization algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Hyper-entanglement with an emphasis on mode type is used to extend a previously developed atmospheric imaging
system. Angular spectrum expansions combined with second quantization formalism permits many different mode types
to be considered using a common formalism. Fundamental Gaussian, standard Hermite-Gaussian, standard Laguerre-
Gaussian, and Bessel modes are developed. Hyper-entanglement refers to entanglement in more than one degree of
freedom, e.g. polarization, energy-time and orbital angular momentum. The system functions at optical or infrared
frequencies. Only the signal photon propagates in the atmosphere, the ancilla photon is retained within the detector.
This results in loss being essentially classical, giving rise to stronger forms of entanglement. A simple atomic physics
based model of the scattering target is developed. This model permits the derivation in closed form of the loss
coefficient for photons with a given mode type scattering from the target. Signal loss models for propagation,
transmission, detection, and scattering are developed and applied. The probability of detection of photonic orbital
angular momentum is considered in terms of random media theory. A model of generation and detection efficiencies for
the different degrees of freedom is also considered. The implications of loss mechanisms for signal to noise ratio (SNR),
and other quantum information theoretic quantities are discussed. Techniques for further enhancing the system’s SNR
and resolution through adaptive optics are examined. The formalism permits random noise and entangled or nonentangled
sources of interference to be modeled.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.