8 December 2015 Influence of resampling on accuracy of imbalanced classification
Author Affiliations +
Proceedings Volume 9875, Eighth International Conference on Machine Vision (ICMV 2015); 987521 (2015) https://doi.org/10.1117/12.2228523
Event: Eighth International Conference on Machine Vision, 2015, Barcelona, Spain
Abstract
In many real-world binary classification tasks (e.g. detection of certain objects from images), an available dataset is imbalanced, i.e., it has much less representatives of a one class (a minor class), than of another. Generally, accurate prediction of the minor class is crucial but it’s hard to achieve since there is not much information about the minor class. One approach to deal with this problem is to preliminarily resample the dataset, i.e., add new elements to the dataset or remove existing ones. Resampling can be done in various ways which raises the problem of choosing the most appropriate one. In this paper we experimentally investigate impact of resampling on classification accuracy, compare resampling methods and highlight key points and difficulties of resampling.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
E. Burnaev, P. Erofeev, A. Papanov, "Influence of resampling on accuracy of imbalanced classification", Proc. SPIE 9875, Eighth International Conference on Machine Vision (ICMV 2015), 987521 (8 December 2015); doi: 10.1117/12.2228523; https://doi.org/10.1117/12.2228523
PROCEEDINGS
5 PAGES


SHARE
Back to Top