Translator Disclaimer
27 April 2016 Selective optical scattering characterisation of tissue malignancy using Mueller matrix polarimetry: a simulation study
Author Affiliations +
Quantitative Mueller polarimetry optically characterizes a medium and is reflected upon by the ultrastructural changes in it. Tissue morphology changes occur during advent of diseases like cancer neoplasia. This alters the Mueller matrix characterizing the tissue as an optical element. The nucleus size undergoes an approximate doubling during the development of cancer. Cell crowding during cancer increases the number density of the nuclei per unit volume. Modeling the cell nuclei as main scattering centers, a systematic computational study on how Mueller matrix elements vary for an increase in scatterer size and number density is performed. Simulation on polarized light transport of wavelength 633nm through a slab of size 3 mm comprising of spherical scatterers in a medium of refractive index 1.33 is carried out. Light propagation is modeled using Monte Carlo method and meridian plane method is adopted for tracking the polarization state change. The stokes vector of the outgoing light is tracked to calculate the Mueller matrix images of the light backscattered from the slab. The Mueller matrix elements as well as depolarization factors are derived. The depolarization index increases with scatterer size. Along with nucleus size, change in the cell number density is also expected in the different stages of the cancer growth. Volume fraction of the scatterers in medium is varied as an indicator of this number density change. Behavior of Mueller matrix with respect to change in scattering coefficient due to variation in scatterer size and volume fraction is studied. It is observed that the depolarization index derived from Mueller matrix has selective discrimination towards the change in scattering coefficient caused due to size change and volume fraction change respectively.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Adeeba Fathima and N. Sujatha "Selective optical scattering characterisation of tissue malignancy using Mueller matrix polarimetry: a simulation study", Proc. SPIE 9887, Biophotonics: Photonic Solutions for Better Health Care V, 98872N (27 April 2016);

Back to Top