You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 April 2016Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution
The efficient generation of a cylindrically (radially or azimuthally) polarized LG01 mode was investigated using a ring-shaped pumping distribution in a high-power Yb:YAG thin-disk laser setup. This was realized by implementing a 300 mm long customized fused silica fiber capillary in the pump beam path of the pumping optics of a thin-disk laser. Furthermore, a grating waveguide mirror based on the leaky-mode coupling mechanism was used as one of the cavity end mirrors to allow sufficient reduction of the reflectivity of the polarization state to be suppressed in the resonator. In order to achieve efficient laser operation, an optimized mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian doughnut mode is required. This was investigated theoretically by analyzing the intensity distribution generated by different fiber geometries using a commercially raytracing software (Zemax). The output power, polarization state and efficiency of the emitted laser beam were compared to that obtained with a standard flattop pumping distribution. In particular, the thermal behavior of the disk was investigated since the excessive fluorescence caused by the non-saturated excitation in the center of the homogeneously pumped disk leads to a strong heating of the crystal. This considerable heating source is avoided in the case of the ring-shaped pumping and a reduction of the temperature increase on the disk surface of about 21% (at 280 W of pump power) was observed. This should allow higher pump power densities without increasing the risk of damaging the disk or distorting the polarization purity. With a laser efficiency of 41.2% to be as high as in the case of the flattop pumping, a maximum output power of 107 W was measured.
The alert did not successfully save. Please try again later.
Tom Dietrich, Martin Rumpel, Thomas Graf, Marwan Abdou Ahmed, "Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution," Proc. SPIE 9893, Laser Sources and Applications III, 98930M (27 April 2016); https://doi.org/10.1117/12.2230682