22 July 2016 Use of plasma enhanced ALD to construct efficient interference filters for astronomy in the FUV
Author Affiliations +
Abstract
Over the past few years the advent of atomic layer deposition (ALD) technology has opened new capabilities to the field of coatings deposition for use in optical elements. At the same time, there have been major advances in both optical designs and detector technologies that can provide orders of magnitude improvement in throughput in the far ultraviolet (FUV) and near ultraviolet (NUV) passbands. Recent review work has shown that a veritable revolution is about to happen in astronomical diagnostic work for targets ranging from protostellar and protoplanetary systems, to the intergalactic medium that feeds gas supplies for galactic star formation, and supernovae and hot gas from star forming regions that determine galaxy formation feedback. These diagnostics are rooted in access to a forest of emission and absorption lines in the ultraviolet (UV)[1], and all that prevents this advance is the lack of throughput in such systems, even in space-based conditions. We outline an approach to use a range of materials to implement stable optical layers suitable for protective overcoats with high UV reflectivity and unprecedented uniformity, and use that capability to leverage innovative ultraviolet/optical filter construction to enable astronomical science. These materials will be deposited in a multilayer format over a metal base to produce a stable construct. Specifically, we will employ the use of PEALD (plasma-enhanced atomic layer deposition) methods for the deposition and construction of reflective layers that can be used to construct unprecedented filter designs for use in the ultraviolet.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Paul A. Scowen, Robert Nemanich, Brianna Eller, Hongbin Yu, Tom Mooney, Matt Beasley, "Use of plasma enhanced ALD to construct efficient interference filters for astronomy in the FUV", Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99122F (22 July 2016); doi: 10.1117/12.2232704; https://doi.org/10.1117/12.2232704
PROCEEDINGS
13 PAGES


SHARE
Back to Top