Paper
19 July 2016 Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
Johannes Hubmayr, Jason E. Austermann, James A. Beall, Daniel T. Becker, Steven J. Benton, A. Stevie Bergman, J. Richard Bond, Sean Bryan, Shannon M. Duff, Adri J. Duivenvoorden, H. K. Eriksen, Jeffrey P. Filippini, A. Fraisse, Mathew Galloway, Anne E. Gambrel, K. Ganga, Arpi L. Grigorian, Riccardo Gualtieri, Jon E. Gudmundsson, John W. Hartley, M. Halpern, Gene C. Hilton, William C. Jones, Jeffrey J. McMahon, Lorenzo Moncelsi, Johanna M. Nagy, C. B. Netterfield, Benjamin Osherson, Ivan Padilla, Alexandra S. Rahlin, B. Racine, John Ruhl, T. M. Rudd, J. A. Shariff, J. D. Soler, Xue Song, Joel N. Ullom, Jeff Van Lanen, Michael R. Vissers, I. K. Wehus, Shyang Wen, D. V. Wiebe, Edward Young
Author Affiliations +
Abstract
We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter spider. A primary science goal of spider is to measure the large-scale B-mode polarization of the cosmic microwave background (cmb) in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16x16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The spider receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7° FHWM Gaussian-shaped beams with <1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 x 10-17 W/√Hz, consistent with the phonon noise prediction.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Johannes Hubmayr, Jason E. Austermann, James A. Beall, Daniel T. Becker, Steven J. Benton, A. Stevie Bergman, J. Richard Bond, Sean Bryan, Shannon M. Duff, Adri J. Duivenvoorden, H. K. Eriksen, Jeffrey P. Filippini, A. Fraisse, Mathew Galloway, Anne E. Gambrel, K. Ganga, Arpi L. Grigorian, Riccardo Gualtieri, Jon E. Gudmundsson, John W. Hartley, M. Halpern, Gene C. Hilton, William C. Jones, Jeffrey J. McMahon, Lorenzo Moncelsi, Johanna M. Nagy, C. B. Netterfield, Benjamin Osherson, Ivan Padilla, Alexandra S. Rahlin, B. Racine, John Ruhl, T. M. Rudd, J. A. Shariff, J. D. Soler, Xue Song, Joel N. Ullom, Jeff Van Lanen, Michael R. Vissers, I. K. Wehus, Shyang Wen, D. V. Wiebe, and Edward Young "Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER", Proc. SPIE 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, 99140V (19 July 2016); https://doi.org/10.1117/12.2231896
Lens.org Logo
CITATIONS
Cited by 12 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Bolometers

Sensors

Waveguides

Detector arrays

Silicon

Niobium

Semiconducting wafers

Back to Top