19 July 2016 Optical design and modelling of the QUBIC instrument, a next-generation quasi-optical bolometric interferometer for cosmology
Author Affiliations +
Big Bang cosmologies predict that the cosmic microwave background (CMB) contains faint temperature and polarisation anisotropies imprinted in the early universe. ESA's PLANCK satellite has already measured the temperature anisotropies1 in exquisite detail; the next ambitious step is to map the primordial polarisation signatures which are several orders of magnitude lower. Polarisation E-modes have been measured2 but the even-fainter primordial B-modes have so far eluded detection. Their magnitude is unknown but it is clear that a sensitive telescope with exceptional control over systematic errors will be required. QUBIC3 is a ground-based European experiment that aims to exploit the novel concept of bolometric interferometry in order to measure B-mode polarisation anisotropies in the CMB. Beams from an aperture array of corrugated horns will be combined to form a synthesised image of the sky Stokes parameters on two focal planes: one at 150 GHz the other at 220 GHz. In this paper we describe recent optical modelling of the QUBIC beam combiner, concentrating on modelling the instrument point-spread-function and its operation in the 220-GHz band. We show the effects of optical aberrations and truncation as successive components are added to the beam path. In the case of QUBIC, the aberrations introduced by off-axis mirrors are the dominant contributor. As the frequency of operation is increased, the aperture horns allow up to five hybrid modes to propagate and we illustrate how the beam pattern changes across the 25% bandwidth. Finally we describe modifications to the QUBIC optical design to be used in a technical demonstrator, currently being manufactured for testing in 2016.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
S. Scully, D. Burke, C. O'Sullivan, D. Gayer, M. Gradziel, J. A. Murphy, M. De Petris, D. Buzi, M. Zannoni, A Mennella, M. Gervasi, A. Tartari, B. Maffei, J. Aumont, S. Banfi, P. Battaglia, E. S. Battistelli, A. Baù, B. Bélier, D. Bennet, L. Bergé, J.-Ph. Bernard, M. Bersanelli, M.-A. Bigot-Sazy, N. Bleurvacq, G. Bordier, J. Brossard, E. F. Bunn, D. Cammileri, F. Cavaliere, P. Chanial, C. Chapron, A. Coppolecchia, F. Couchot, G. D'Alessandro, P. De Bernardis, T. Decourcelle, F. Del Torto, L. Dumoulin, C. Franceschet, A. Gault, A. Ghribi, M. Giard, Y. Giraud-Héraud, L. Grandsire, J. Ch. Hamilton, V. Haynes, S. Henrot-Versillé, N. Holtzer, J. Kaplan, A. Korotkov, J. Lande, A. Lowitz, S. Marnieros, J. Martino, S. Masi, Mark McCulloch, Simon Melhuish, L. Montier, D. Néel, M. W. Ng, F. Pajot, A. Passerini, C. Perbost, O. Perdereau, F. Piacentini, M. Piat, L. Piccirillo, G. Pisano, D. Prêle, R. Puddu, D. Rambaud, O. Rigaut, M. Salatino, A. Schillaci, M. Stolpovskiy, P. Timbie, M. Tristram, G. Tucker, D. Viganò, F. Voisin, B. Watson, "Optical design and modelling of the QUBIC instrument, a next-generation quasi-optical bolometric interferometer for cosmology", Proc. SPIE 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, 99142S (19 July 2016); doi: 10.1117/12.2231717; https://doi.org/10.1117/12.2231717


The promise of bolometers for CMB polarimetry
Proceedings of SPIE (February 14 2003)
The optical design of the QUBIC beam combiner
Proceedings of SPIE (September 24 2012)
Optical design for lidar
Proceedings of SPIE (September 15 1995)

Back to Top