1 August 2016 High fidelity point-spread function retrieval in the presence of electrostatic, hysteretic pixel response
Author Affiliations +
We employ electrostatic conversion drift calculations to match CCD pixel signal covariances observed in at field exposures acquired using candidate sensor devices for the LSST Camera.1, 2 We thus constrain pixel geometry distortions present at the end of integration, based on signal images recorded. We use available data from several operational voltage parameter settings to validate our understanding. Our primary goal is to optimize flux point spread function (FPSF) estimation quantitatively, and thereby minimize sensor-induced errors which may limit performance in precision astronomy applications. We consider alternative compensation scenarios that will take maximum advantage of our understanding of this underlying mechanism in data processing pipelines currently under development. To quantitatively capture the pixel response in high-contrast/high dynamic range operational extrema, we propose herein some straightforward laboratory tests that involve altering the time order of source illumination on sensors, within individual test exposures. Hence the word hysteretic in the title of this paper.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Andrew Rasmussen, Andrew Rasmussen, Augustin Guyonnet, Augustin Guyonnet, Craig Lage, Craig Lage, Pierre Antilogus, Pierre Antilogus, Pierre Astier, Pierre Astier, Peter Doherty, Peter Doherty, Kirk Gilmore, Kirk Gilmore, Ivan Kotov, Ivan Kotov, Robert Lupton, Robert Lupton, Andrei Nomerotski, Andrei Nomerotski, Paul O'Connor, Paul O'Connor, Christopher Stubbs, Christopher Stubbs, Anthony Tyson, Anthony Tyson, Christopher Walter, Christopher Walter, } "High fidelity point-spread function retrieval in the presence of electrostatic, hysteretic pixel response", Proc. SPIE 9915, High Energy, Optical, and Infrared Detectors for Astronomy VII, 99151A (1 August 2016); doi: 10.1117/12.2234482; https://doi.org/10.1117/12.2234482

Back to Top