You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 September 2016Nonlinear plasmonic resonances in graphene nanostructures
Peculiar physical properties of graphene offer remarkable potential for advanced photonics, particularly in the area of nonlinear optics at deep-subwavelength scale. In this article, we use a theoretical and computational analysis to demonstrate an efficient mechanism for enhancing the third-harmonic generation in graphene diffraction gratings. By taking advantage of the relation between the resonance wavelength of localized surface-plasmon polaritons of graphene ribbons and disks their specific geometry, we can engineer the spectral response of graphene gratings so as strong plasmonic resonances exist at both the fundamental frequency and third-harmonic (TH). As a result of this dual resonance mechanism for optical near-field enhancement, the intensity of the TH can be increased greatly.
The alert did not successfully save. Please try again later.
Jian Wei You, Martin Weismann, Nicolae C. Panoiu, "Nonlinear plasmonic resonances in graphene nanostructures," Proc. SPIE 9920, Active Photonic Materials VIII, 99200P (16 September 2016); https://doi.org/10.1117/12.2237944