23 September 2016 Environmental stability study of holographic solar spectrum splitting materials
Author Affiliations +
Abstract
In this study the impact of outdoor temperature variations and solar illumination exposure on spectral filter material and holographic optical elements is examined. Although holographic components have been shown to be useful for solar spectrum splitting designs, relatively little quantitative data exist to demonstrate the extent to which these materials can withstand outdoor conditions. As researchers seek to investigate practical spectrum splitting designs, the environmental stability of holographic materials should be considered as an important factor. In the experiment presented, two holographic materials, Covestro Bayfol HX photopolymer and dichromated gelatin, and 3M reflective polymer filter materials are exposed to outdoor conditions for a period of several months. The environmental effect on absorption, spectral and angular bandwidth, peak efficiency, and Bragg matching conditions for the holograms are examined. Spectral bandwidth and transmittance of the 3M reflective filter material are also monitored. Holographic gratings are recorded, measured, and mounted on glass substrates and then sealed with a glass cover plate. The test samples are then mounted on a photovoltaic panel to simulate realistic temperature conditions and placed at an outdoor test facility in Tucson, Arizona. A duplicate set of holograms and 3M filter material is stored as a control group and periodically compared over the test period.
Conference Presentation
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Benjamin D. Chrysler, Benjamin D. Chrysler, Silvana Ayala Pelaez, Silvana Ayala Pelaez, Yuechen Wu, Yuechen Wu, Shelby D. Vorndran, Shelby D. Vorndran, Raymond K. Kostuk, Raymond K. Kostuk, } "Environmental stability study of holographic solar spectrum splitting materials", Proc. SPIE 9937, Next Generation Technologies for Solar Energy Conversion VII, 99370N (23 September 2016); doi: 10.1117/12.2237071; https://doi.org/10.1117/12.2237071
PROCEEDINGS
9 PAGES + PRESENTATION

SHARE
RELATED CONTENT


Back to Top