You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 September 2016Generation of self-healing beams via four-wave mixing optical mode conversion
We present the experimental conversion of a spatially-Gaussian optical mode into a self-healing, approximate Bessel-Gauss mode by a non-collinear, spatially-multimode four-wave mixing process in warm atomic vapor. In addition to the mode conversion, a second, spatially-separate conjugate beam is created in a non-Gaussian mode that mimics that of the resulting converted probe beam. Additionally, we show that these resulting beams exhibit the ability to partially self-heal their mode profiles after encountering an obstacle in their paths. This multi-spatial-mode nonlinear gain platform may thus be used as a new method for all-optically generating pairs of self-healing beams.
The alert did not successfully save. Please try again later.
Onur Danaci, Christian Rios, Ryan T. Glasser, "Generation of self-healing beams via four-wave mixing optical mode conversion," Proc. SPIE 9950, Laser Beam Shaping XVII, 99500D (27 September 2016); https://doi.org/10.1117/12.2240815