You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 September 2016Security analysis of quadratic phase based cryptography
The linear canonical transform (LCT) is essential in modeling a coherent light field propagation through first-order optical systems. Recently, a generic optical system, known as a Quadratic Phase Encoding System (QPES), for encrypting a two-dimensional (2D) image has been reported. It has been reported together with two phase keys the individual LCT parameters serve as keys of the cryptosystem. However, it is important that such the encryption systems also satisfies some dynamic security properties. Therefore, in this work, we examine some cryptographic evaluation methods, such as Avalanche Criterion and Bit Independence, which indicates the degree of security of the cryptographic algorithms on QPES. We compare our simulation results with the conventional Fourier and the Fresnel transform based DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence characteristics than that of using the conventional Fourier and Fresnel based encryption systems.
The alert did not successfully save. Please try again later.
Inbarasan Muniraj, Changliang Guo, Ra'ed Malallah, John J. Healy, John T. Sheridan, "Security analysis of quadratic phase based cryptography," Proc. SPIE 9970, Optics and Photonics for Information Processing X, 99700T (12 September 2016); https://doi.org/10.1117/12.2236644