Translator Disclaimer
21 October 2016 Multi-spectral texture analysis for IED detection
Author Affiliations +
The use of Improvised Explosive Devices (IEDs) has increased significantly over the world and is a globally widespread phenomenon. Although measures can be taken to anticipate and prevent the opponent's ability to deploy IEDs, detection of IEDs will always be a central activity. There is a wide range of different sensors that are useful but also simple means, such as a pair of binoculars, can be crucial to detect IEDs in time.

Disturbed earth (disturbed soil), such as freshly dug areas, dumps of clay on top of smooth sand or depressions in the ground, could be an indication of a buried IED. This paper brie y describes how a field trial was set-up to provide a realistic data set on a road section containing areas with disturbed soil due to buried IEDs. The road section was imaged using a forward looking land-based sensor platform consisting of visual imaging sensors together with long-, mid-, and shortwave infrared imaging sensors.

The paper investigates the presence of discriminatory information in surface texture comparing areas with disturbed against undisturbed soil. The investigation is conducted for the different wavelength bands available. To extract features that describe texture, image processing tools such as 'Histogram of Oriented Gradients', 'Local Binary Patterns', 'Lacunarity', 'Gabor Filtering' and 'Co-Occurence' is used. It is found that texture as characterized here may provide discriminatory information to detect disturbed soil, but the signatures we found are weak and can not be used alone in e.g. a detector system.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Henrik Petersson and David Gustafsson "Multi-spectral texture analysis for IED detection", Proc. SPIE 9988, Electro-Optical Remote Sensing X, 99880P (21 October 2016);

Improvised explosive devices



Image processing

Long wavelength infrared

Principal component analysis


Back to Top