You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 October 2016Deep subspace mapping in hyperspectral imaging
We propose a novel Deep learning approach using autoencoders to map spectral bands to a space of lower dimensionality while preserving the information that makes it possible to discriminate different materials. Deep learning is a relatively new pattern recognition approach which has given promising result in many applications. In Deep learning a hierarchical representation of increasing level of abstraction of the features is learned. Autoencoder is an important unsupervised technique frequently used in Deep learning for extracting important properties of the data. The learned latent representation is a non-linear mapping of the original data which potentially preserve the discrimination capacity.
The alert did not successfully save. Please try again later.
Niclas Wadströmer, David Gustafsson, Henrik Perersson, David Bergström, "Deep subspace mapping in hyperspectral imaging," Proc. SPIE 9988, Electro-Optical Remote Sensing X, 99880Q (21 October 2016); https://doi.org/10.1117/12.2241771