A very warm thank you to all the companies and institutes that made this publication possible:

Edmund Optics worldwide

FISBA Innovators in Photonics

Fraunhofer ILT

Hamamatsu Photonics

IMT Precision on Glass

Rofin

Toptica Photonics

TRUMPF
A very warm thank you to all the companies and institutes that made this publication possible:

Technical applications of light
INFOGRAPHICS
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASICS</td>
<td></td>
</tr>
<tr>
<td>What is photonics?</td>
<td>01</td>
</tr>
<tr>
<td>Smallest points</td>
<td>02</td>
</tr>
<tr>
<td>Highest velocity</td>
<td>03</td>
</tr>
<tr>
<td>Shortest times</td>
<td>04</td>
</tr>
<tr>
<td>Highest power</td>
<td>05</td>
</tr>
<tr>
<td>Undisturbed superposition</td>
<td>06</td>
</tr>
<tr>
<td>Light spectrum</td>
<td>07</td>
</tr>
<tr>
<td>Hidden realm of photonics</td>
<td>08</td>
</tr>
<tr>
<td>Shorter wavelengths</td>
<td>09</td>
</tr>
<tr>
<td>Window glass vs optical fiber</td>
<td>10</td>
</tr>
<tr>
<td>Mirrors vs laser mirrors</td>
<td>11</td>
</tr>
<tr>
<td>Laser types</td>
<td>12</td>
</tr>
<tr>
<td>Laser vs the Sun</td>
<td>13</td>
</tr>
<tr>
<td>PRODUCTION TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>Image of smallest structures</td>
<td>14</td>
</tr>
<tr>
<td>Precise laser drilling</td>
<td>15</td>
</tr>
<tr>
<td>Laser cutting</td>
<td>16</td>
</tr>
<tr>
<td>Smartphones thanks to the laser</td>
<td>17</td>
</tr>
<tr>
<td>3D printing</td>
<td>18</td>
</tr>
<tr>
<td>DATA TRANSFER</td>
<td></td>
</tr>
<tr>
<td>Optical fiber networks</td>
<td>19</td>
</tr>
<tr>
<td>Laser communication in space</td>
<td>20</td>
</tr>
<tr>
<td>QR-codes</td>
<td>21</td>
</tr>
<tr>
<td>IMAGE CAPTURE & DISPLAY</td>
<td></td>
</tr>
<tr>
<td>Camera lenses</td>
<td>22</td>
</tr>
<tr>
<td>Gesture control</td>
<td>23</td>
</tr>
<tr>
<td>Flat screens</td>
<td>24</td>
</tr>
<tr>
<td>LCD vs OLED</td>
<td>25</td>
</tr>
</tbody>
</table>
BASICS
Photons is the generation, transmission, and utilization of light and other electromagnetic radiation. Photonics offers solutions to the global challenges of our time.
SMALLEST POINTS

Light can be focused on extremely small diameters.

1,000 µm: paper clip wire
500 µm: pin
100 µm: focus in laser cutting
50 µm: human hair
10 µm: optical fiber core

outer sheath: 100 µm
core: 10 µm

1,000 µm = 1 mm
HIGHEST VELOCITY

Nothing is faster than light. The speed of light is 299,792,458 m/s.

- 1.5 m courier by foot
- 20 m carrier pigeon
- 250 m aircraft
- 10 km Apollo moon rocket
- 200,000 km optical fiber cable
- 300,000 km light in space

5 times around the Earth in an optical fiber cable

Distance Earth – Moon 384,400 km
BASICS

04

SHORTEST TIMES

Light makes even the fastest events measurable.

- **second** (1s) - blink
- **millisecond** (1ms) - athlete in action
- **microsecond** (1µs) - high-speed camera
- **nanosecond** (1ns) - electric impulses in a computer
- **picosecond** (1ps) - chemical processes such as the splitting of DNA
- **femtosecond** (1fs) - processes inside an atom
- **attosecond** (1as) - only measurable with light
With the pulsed operation of lasers, a power orders of magnitude greater than anything we have known so far can be achieved. This is made possible through the concentration of laser power to very short femtosecond pulses.

COMPARISON OF POWER

Worldwide power generated by electric power plants
2.6 terawatts = 2,600 gigawatts

around 400 times

Generated power of the Berkeley Lab Laser Accelerator
1 petawatt
= 1,000,000 gigawatts

Peak powers are reached periodically for very short time intervals.
Dozens of data signals can be coupled into one single optical fiber and be separated again at the receiver’s end. The signals can be very finely distinguished based on their wavelength (spectral color), polarization, and phase.

Over 40 channels with data signals can be superposed in one fiber.

transmission rate: 100 gigabits per second
Light is the very small part of the electromagnetic spectrum visible to the human eye in the wavelength range of 380 to 780 nanometers.

Spectral Sensitivity of the Eye at Daytime

- **Wavelength in Nanometers (nm)**: 400, 500, 600, 700, 800

Spectral Distribution of Sunlight on Earth

- **Wavelength in Nanometers (nm)**: 400, 500, 600, 700, 800

UV	IR

Range visible to humans: 380 to 780 nm
Photonic applications use a broad portion of the electromagnetic spectrum that is predominantly not visible to humans.

<table>
<thead>
<tr>
<th>Cosmic Radiation</th>
<th>Gamma Radiation</th>
<th>X-Ray</th>
<th>Ultraviolet</th>
<th>Infra-Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 femtometer</td>
<td>1 picometer</td>
<td>1 nanometer</td>
<td>1 zettahertz</td>
<td>1 exahertz</td>
</tr>
</tbody>
</table>

- **High frequency frequencies**
- **Wavelengths** short wave

- **Radiocarbon dating**
- **Material testing**
- **X-ray machines**
- **Ultraviolet lamp**
- **Heat lamp**
- **Visible light**
Photonic applications use a broad portion of the electromagnetic spectrum that is predominantly not visible to humans.
09

SHORTER WAVELENGTHS

Wavelength has a great influence on the performance of optical systems. Shorter wavelengths can produce smaller focus diameters making greater recording densities possible on optical storage media.

WAVELENGTHS USED TO READ OPTICAL DISCS

<table>
<thead>
<tr>
<th>CD</th>
<th>DVD</th>
<th>Blu-Ray Disc</th>
</tr>
</thead>
<tbody>
<tr>
<td>infrared 780 nm</td>
<td>red 650 nm</td>
<td>violet 405 nm</td>
</tr>
</tbody>
</table>

Increasing recording density

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
WINDBLOW GLASS vs OPTICAL FIBER

Glass is the most important component of optical systems. However, common window glass and glass used in photonics applications are worlds apart.

LIGHT TRANSMISSION OF GLASS

How thick can different glass types be so that 1% of the emitted light is still transmitted?

WINDOW GLASS

80 cm

1% of light

OPTICAL GLASS

29 m

(example: camera lens)

OPTICAL FIBER

100 km (only valid for infrared light)
MIRRORS vs LASER MIRRORS

Many optical components can be found in their basic forms in the home. The components used in photonics, however, are characterized by the highest accuracy and technical finesse.

HOUSEHOLD MIRROR CONSTRUCTION

1. glass plate
2. back silver coating
3. protective layer

86% reflectance
Many optical components can be found in their basic forms in the home. The components used in photonics, however, are characterized by the highest accuracy and technical finesse.

HOUSEHOLD MIRROR CONSTRUCTION
- glass plate
- back silver coating
- protective layer

LASER MIRROR CONSTRUCTION
- glass substrate
- 99.9% reflectance
- layers of varying materials
- 99.9% reflectance
- Usually, at least 20 to 50 layers of 100 to 200 nanometers thickness are applied on the front of a substrate. The result is an extremely high reflectance.

laser mirror in kinematic mount
Lasers are the central component of many photonics applications. The numerous laser types always consist of the same basic elements although their shape strongly varies.

basic elements
- active medium = excited atoms or molecules
- energy supply = pump
- resonator (end mirror or output coupler)
- laser beam

LASER TYPES

Lasers are the central component of many photonics applications. The numerous laser types always consist of the same basic elements although their shape strongly varies.
LASERS vs THE SUN

While conventional light sources emit their energy in all directions, lasers bundle the emitted light very efficiently into almost parallel light beams of small diameters.

PERFORMANCE COMPARISON

Sun

174 petawatts

700 watts per m²
solar radiation intensity on the Earth
(central European summer)

Earth

button hole Ø1.5 mm

PERFORMANCE BEHIND BUTTON HOLE
in milliwatts

1

ABSOLUTE PERFORMANCE

5 milliwatts (max.)

laser pointer

1.5 mm
beam diameter

5
Modern technology requires efficient electronics in the smallest spaces. Thanks to optical technologies it is possible to organize increasingly smaller electronic components on semiconductor chips.

DEVELOPMENT OF SEMICONDUCTOR PRODUCTION PROCESSES

The image of increasingly smaller structures requires light sources with very short wavelengths.

OPTICAL BEAM PATH

Extreme ultraviolet (EUV) light, which is already in use and which has a wavelength of only 13.5 nanometers, requires the application of purely reflective optics with extremely accurate geometry.
PRECISE LASER DRILLING

Ultrashort pulse lasers drill differently sized, accurately shaped injection nozzles that distribute the fuel in the best way possible. Thanks to laser precision machining, up to 30% of fuel can be saved.

The lens focuses pulsed laser beams on a 10-micrometer diameter.

The heating of adjoining material is avoided by laser pulses shorter than 10 picoseconds.

optimum distribution of fuel
LASER CUTTING

Laser cutting enables very quick processing of materials with a low loss of material, which makes this method extremely energy-efficient.

EFFICIENCY AND PERFORMANCE COMPARISON OF CONVENTIONAL MILLING AND LASER CUTTING

cutting a 5-millimeter-thick steel plate for one meter

<table>
<thead>
<tr>
<th></th>
<th>CONVENTIONAL MILLING</th>
<th>LASER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTTING WIDTH (millimeters)</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>TOOL PERFORMANCE (kilowatts)</td>
<td>0.4</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTAL ENERGY CONSUMPTION taking into account material savings (kilowatt hours)

0.4

15

12 Seconds
Efficiency and Performance Comparison of Conventional Milling and Laser Cutting

- Conventional milling:
 - Cutting a 5-millimeter-thick steel plate for one meter:
 - Duration per meter: 14 Minutes
 - Energy consumption: 0.10 kilowatt hours
 - Waste: 390 grams

- Laser cutting:
 - Laser cutting enables very quick processing of materials with a low loss of material, which makes this method extremely energy-efficient.
 - Duration per meter: 12 Seconds
 - Energy consumption: 0.07 kilowatt hours
 - Waste: 15 grams

- Total energy consumption taking into account material savings:
 - Conventional milling: 2.05 kilowatt hours
 - Laser cutting: 0.14 kilowatt hours
SMARTPHONES
THANKS TO THE LASER

Hundreds of thousands of smartphones are manufactured daily. Quality and efficiency of production are of crucial importance to the manufacturers in this competitive market. Lasers are the key to success here.

LASER TYPES
- fiber laser
- UV solid-state laser
- solid-state laser
- CO₂ laser
- ultrashort pulse laser
- UV excimer laser
- IR diode laser

MACHINE PROCESS
- edge
- area
- pattern
- holes

Touchscreen
- cutting of extremely thin, hard cover glass
- cutting of touchscreen foil
- structuring of conducting layers

Screen
- generation of polycrystalline layers
- encapsulation of laminated glasses

Battery
- welding of battery case
- marking logo, data-matrix-code, and serial number

Circuit board
- structuring of conductor tracks
- cutting of foil circuit boards
- drilling of contact holes

Housing
- cutting of housing
- marking logo and serial number
3D PRINTING

Based on a computer drawing, complex structures can be produced from plastics, ceramics, and metals with the help of selective laser melting. Dentures and implants are among the rapidly growing number of applications.

GENERAL OPERATING PRINCIPLE

The digital model of an object is transformed into a model made of a series of thin layers.

1. A layer of powder is applied.

2. The build platform is lowered with every layer. The application, melting, and lowering repeats itself until the object is finished.

3. The powder melts in the component’s cross section according to the specifications of the layer model. At the end, the material that has not melted will be removed. The actual object is all that is left.
Optical fibers offer substantially higher transmission rates, while simultaneously providing large ranges. Other advantages are lighter cables, lower space requirements, and fewer repeaters. The operation and maintenance costs are also significantly reduced.

Data cable in city area

<table>
<thead>
<tr>
<th>Material</th>
<th>Cladding</th>
<th>Transfer Speed (in Mbit/s)</th>
<th>Range (in km, without repeater)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical fiber</td>
<td>0.6 mm</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>Copper</td>
<td>6.9 mm</td>
<td>50</td>
<td>2</td>
</tr>
</tbody>
</table>

In 1988, the first transatlantic optical fiber cable, the TAT-8, went into operation. Optical fiber quickly replaced copper cables to meet the fast-growing need for greater capacity. Today, submarine cables with capacities of up to several terabytes per second connect the whole Earth.
Optical fibers offer substantially higher transmission rates, while simultaneously providing large ranges. Other advantages are lighter cables, lower space requirements, and fewer repeaters. The operation and maintenance costs are also significantly reduced.

Data Cable in City Area

- **Copper cable cladding cross section in original size:**
 - Copper: 6.9 mm x 1.1 mm
 - Optical fiber: 0.6 mm x 10 µm (0.01 mm)

Transmission Rates and Energy Consumption

- **100 m cable in kg:**
 - Copper: 0.6 kg
 - Optical fiber: 5.8 kg

- **Energy consumption in watts per user:**
 - Copper: 2 watts
 - Optical fiber: 5 watts

Shelf Life

- **50 years** for copper cables
- **5 years** for optical fiber cables

DATA TRANSFER

OPTICAL FIBER NETWORKS

In 1988, the first transatlantic optical fiber cable, the TAT-8, went into operation. Optical fiber quickly replaced copper cables to meet the fast-growing need for greater capacity. Today, submarine cables with capacities of up to several terabytes per second connect the whole Earth.
LASER COMMUNICATION IN SPACE

Free space optical communication between near-Earth and geostationary satellites enables the fast transfer of data to a ground station. Vital data during natural catastrophes or in emergencies at sea can be received almost in real time in this way.

ADVANTAGES OF THE LASER

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARGE DATA VOLUMES</td>
<td>1.8 gigabytes per second corresponds to around 500 songs per second</td>
</tr>
<tr>
<td>NO LIMIT</td>
<td>due to frequency allocations</td>
</tr>
<tr>
<td>LOWER ENERGY CONSUMPTION</td>
<td>expands shelf life</td>
</tr>
<tr>
<td>LESS MASS</td>
<td>saves costs</td>
</tr>
</tbody>
</table>

THE LASER AND OPTICS MEET THE HIGHEST REQUIREMENTS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMALLEST TOLERANCE</td>
<td>for generating a bundled laser beam across largest distances</td>
</tr>
<tr>
<td>stable</td>
<td>despite great TEMPERATURE DIFFERENCES</td>
</tr>
<tr>
<td>survive</td>
<td>strong VIBRATIONS and ACCELERATIONS during rocket launches</td>
</tr>
<tr>
<td>over 15 years</td>
<td>MAINTENANCE-FREE</td>
</tr>
<tr>
<td>RESISTANT</td>
<td>against UV and gamma radiation in space</td>
</tr>
</tbody>
</table>
ADVANTAGES OF THE LASER

NO LIMIT due to frequency allocations

LARGE DATA VOLUMES
1.8 gigabytes per second corresponds to around 500 songs per second

LESS MASS saves costs

LOWER ENERGY CONSUMPTION expands shelf life

SMALLEST TOLERANCE for generating a bundled laser beam across largest distances stable despite great TEMPERATURE DIFFERENCES survive strong VIBRATIONS and ACCELERATIONS during rocket launches

over 15 years MAINTENANCE/hyphen.case FREE RESISTANT against UV and gamma radiation in space

NEAR-EARTH SATELLITE scans parts of the Earth’s surface

height: 700 km

GEOSTATIONARY SATELLITE

height: 36,000 km

SATELLITE-LASER LINK

SATELLITE-LASER LINK

RECEIVING STATION on Earth

DATA TRANSFER

LARGE VOLUME

SMALLER INSTALLATION

LOW MAINTENANCE

LONG DURABILITY

HIGHER EFFICIENCY

DATA SECURITY

THE LASER AND OPTICS MEET THE HIGHEST REQUIREMENTS

LASER COMMUNICATION IN SPACE

Free space optical communication between near-Earth and geostationary satellites enables the fast transfer of data to a ground station. Vital data during natural catastrophes or in emergencies at sea can be received almost in real time in this way.
Cameras and optical sensors often work together with intelligent image or data processing. The QR code (Quick Response) shows this impressively.

USE OF QR CODES

QR codes are two-dimensional bar codes. A camera phone with the appropriate code reader software recognizes this information and decodes it.
QR-CODE STRUCTURE

Apart from the content, QR codes contain additional elements so that the software can recognize the data correctly. This includes:

- positioning
- format information
- timing
- version information
- alignment

Up to 4,000 alphanumerical characters fit on a QR code.

ADVANTAGES OF QR CODES

In comparison to the classic barcode, QR codes can store more information on a smaller area and make fewer requirements of reading devices.

They also function even if they are partly damaged or corrupted:

- graphic/text in code
- distorted
- blurred
- twisted
IMAGE CAPTURE & DISPLAY
Today, brilliant images are possible with the smallest smartphone lenses. Why then is it still necessary to have large lenses in photography?

SIZE COMPARISON

(original sizes)

Smartphones display all objects from near to far with the same sharpness. The depth of field can be set selectively with large SLR lenses.
Today, brilliant images are possible with the smallest smartphone lenses. Why then is it still necessary to have large lenses in photography?

Despite their small size, smartphone lenses have sophisticated optics with complex lens arrangements. The most important consequence of the size difference is the different depths of field.

Smartphones display all objects from near to far with the same sharpness. The depth of field can be set selectively with large SLR lenses.
GESTURE CONTROL

Optical systems can capture and interpret hand movements contactlessly – this is ideal in sterile workplaces such as hospital operating rooms.

SURGICAL HAND-TRACKING SYSTEM
detailed view from below

Two infrared (IR) cameras capture the scene like two human eyes from slightly shifted perspectives.

A 3D camera, which is based on the propagation time of light, verifies the distance.

3D camera measures the distance

system captures finger positions

line laser marks interactive area
In contrast to early cathode ray tubes, flat screens save a great deal of energy per unit area. Impressive global production capacities meet the high demand for these displays.

ELECTRICITY CONSUMPTION AT SAME DISPLAY SIZE

- **100%**
 - Cathode ray tube
- **25%**
 - LCD

PRODUCTION OF FLAT SCREENS WITHIN ONE HOUR

- **200,000** smartphone displays
- **2** football fields (total area of produced flat screens (TVs, tablets, smartphones, and others))
LCD vs OLED

Today, LCD displays dominate the flatscreen market, but in smartphones, organic LEDs (OLEDs) are conquering an increasingly larger market share. OLED displays are thinner, more energy-efficient, and higher in contrast but more expensive to produce.

LCD DISPLAY STRUCTURE

Today’s most common type of display creates images by blocking off or letting through white light that LEDs create across the back of the display.
Today, LCD displays dominate the flatscreen market, but in smartphones, organic LEDs (OLEDs) are conquering an increasingly larger market share. OLED displays are thinner, more energy-efficient, and higher in contrast but more expensive to produce.

Display Resolutions

- **Standard Resolution:** 720 x 480
- **Full HD:** 1920 x 1080
- **4K Ultra HD:** 3840 x 2160
- **8K Ultra HD:** 7680 x 4320

OLED Display Structure

Organically luminous materials in OLED displays do not require a separate light source, which makes their construction depth much thinner.

OLED - Organic Light Emitting Diode

These layers together are around 200 times thinner than a human hair.

- **Cover glass**
- **Cathode**
- **Anode**
- **TFT = thin-film transistors**
- **Carrier material (glass or plastic)**
- **Organic layers**
 - Molecules are electrically excited to make them glow.
COUNTING BLOOD CELLS

Thousands of cells per second are counted and characterized in medical and biotechnical analytics with laser-based flow cytometry. This enables the fast and secure detection of blood anomalies.

fluorescent light:
The color-separated light provides information about a variety of cell characteristics.

forward scatter:
measurement of the cell’s volume

side scatter:
measurement of the cell’s granularity

Cells are being excited to make them glow.
Endoscopes enable doctors to examine body cavities and hollow organs, detect illnesses, and treat them with minimal invasion at the same time, if required. The tubes, which are only a few millimeters thick, transfer illumination in one direction and high-resolution images in real time in the other direction.
Individually adjusted varifocals help older people have good vision for all distances. A variety of criteria is included in the calculation for personalized and individual lens design. CNC machines are used to translate the calculated design into individual lenses with micrometer precision.

INDIVIDUAL CRITERIA

- Spectacle adjustment
- Shape of spectacle frame
- Wearer's characteristics
- Intended use (sports, office, daily life)
- Eye and head movement
- Pupillary distance
- Pantoscopic tilt
- Fitting height
- Fitting
- Height
- Pantoscopic tilt
- Eye correction
- Prismatic: associated heterophoria
- Axial: direction of lens fitting
- Spherical: myopia or hyperopia
- Cylindrical: degree of astigmatism
- Face form angle
- Corneal vertex distance

MODEL OF VARIFOCALS

- Distance vision: > 2 m
- Near vision: < 0.5 m
- Medium vision: 0.5 – 2 m

The different colors indicate the varying refractive power of the lens: from red (strong) to blue (weak).
Individually adjusted varifocals help older people have good vision for all distances. A variety of criteria is included in the calculation for personalized and individual lens design. CNC machines are used to translate the calculated design into individual lenses with micrometer precision.

Individually adjusted varifocals

- **Shape of spectacle frame**
- **Spectacle adjustment**
- **Eye correction**
- **Cylindrical: degree of astigmatism**
- **Pupillary distance**
- **Fitting**
- **Height**
- **Pantoscopic tilt**

Model of varifocals

- **Distance vision**: > 2 m
- **Medium vision**: 0.5 – 2 m
- **Near vision**: < 0.5 m

The different colors indicate the varying refractive power of the lens: from red (strong) to blue (weak).
SEEING CLEARLY AGAIN

From the age of 60 onwards, most people get a slight cataract – known as the grey star. Treating cataracts is the most common operation around the world. The WHO estimates that by 2020, 32 million cataract operations will be performed. The use of the femtosecond laser with ultra-short pulses allows a precise and careful operation.
From the age of 60 onwards, most people get a slight cataract known as the grey star. Treating cataracts is the most common operation around the world. The WHO estimates that by 2020, 32 million cataract operations will be performed. The use of the femtosecond laser with ultra-short pulses allows a precise and careful operation.

SEQUENCE OF A LASER OPERATION

1. opening the lens

2. segmenting the lens

3. opening the cornea

4. suctioning the lens

5. inserting and centering the artificial lens
WHITE LED LIGHT

LED chips make colorful light. White light is created by luminescence conversion.

White light is a mix of red, blue and green.

Creation of white LED light through luminescence conversion:
- LED chip
- Blue light is being emitted.
- Yellow phosphor layer converts incoming light.
- Red, blue, and green light is created.
- Red, blue, and green together make white light.

The suppression of the blue peak results in a warmer light.

SPECTRUM OF A WHITE LED LAMP

WAVELENGTH IN NANOMETERS

SPECTRAL INTENSITY
BRIGHTER WITH LEDs

Since the light bulb, the light output of different types of lamps has been significantly increased. Today, white LEDs are the most efficient ones.
LAMP SPECIFICATIONS

Just a few years ago, you could find out almost everything you needed to know about the light of a domestic lamp just by looking at the number of watts. Nowadays, nearly a dozen criteria have to be considered.

- **power (watts)**
 - electrical connected load
- **brightness (lumens)**
 - how bright the lamp’s light is
- **color temperature (Kelvin)**
 - the higher the color temperature, the colder (more blue) the light
- **warm-up time**
 - the time it takes for the lamp to fully light up
- **dimmability**
 - lamp dimmable or not
- **shelf life**
 - usage in hours
- **color rendering index**
 - accuracy of color rendering
- **energy savings**
 - in comparison to the conventional light bulb
- **mercury content**
 - environmentally friendly without mercury
- **illumination angle**
 - the scope and range of effective light
LED lights can be switched on and off so quickly that it is imperceptible to the human eye. In this way, hundreds of megabytes per second can be transmitted to a mobile optical receiver as an additional function apart from the lighting – completely without electrosmog or additional cables.
LASER SHOWS

Laser shows are an impressive way of demonstrating how fascinating photonics can be.

BRILLIANT COLORS
Only lasers can make colors that are completely saturated.

GREEN ENTERTAINMENT TECHNOLOGY
The relatively low energy consumption ensures environmentally-friendly entertainment for large crowds.

AUDIENCE

ARTIFICIAL FOG
Fog makes the laser beam visible.
LASER PROJECTOR
Two extremely fast-moving computer-controlled mirrors draw the laser image.

BRIGHT & HIGH CONTRAST
In comparison to a video, a laser image is focused at any distance.

WATER CANVAS
Laser projections can be made on very large areas in any shape or form.

SINGLE BEAMS IN THE SKY
This is only possible with explicit authorization from the aviation safety authorities.

LASER SHOWS
Laser shows are an impressive way of demonstrating how fascinating photonics can be.

GREEN ENTERTAINMENT TECHNOLOGY
The relatively low energy consumption ensures environmentally-friendly entertainment for large crowds.

ARTIFICIAL FOG
Fog makes the laser beam visible.

BRILLIANT COLORS
Only lasers can make colors that are completely saturated.

LIGHTING
34
Measuring systems based on the roundtrip time of emitted and reflected infrared laser beams can calculate the speed of vehicles precisely. Cameras take pictures of the vehicle and driver if they have committed a traffic offence.

SPEED CAMERA COLUMN UNIT

- camera unit
- laser measuring unit

SPEED CAMERA COLUMN

- measuring area of laser
- area camera 1
- area camera 2
- simultaneous measuring of cars in several lanes

Maximum measuring distance: 75 m

Infrared laser light:
- over 100 laser beams
- 100 times per second
Measuring systems based on the roundtrip time of emitted and reflected infrared laser beams can calculate the speed of vehicles precisely. Cameras take pictures of the vehicle and driver if they have committed a traffic offence.

Light impulses emitted from the speed camera column are reflected by the passing car and received again by the device. Infrared laser light: over 100 laser beams 100 times per second.

- Maximum measuring distance: 75 m
- Laser measuring unit
- Simultaneous measuring of cars in several lanes
- Laser area camera 1
- Laser area camera 2
- Speed camera unit
- Speed camera column unit

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Intelligent LED lights, camera-based assistance systems, and information displays ensure a greater security in all driving situations.
Intelligent LED lights, camera-based assistance systems, and information displays ensure a greater security in all driving situations.

- Camera for traffic sign recognition
- Rear-view mirror camera
- LED interior lighting (color temperature and brightness can be chosen)
- Rear-view camera
- LED reading lights
- Interior light sensor
- Dynamic LED indicator
- Rain sensor
- Exterior light sensor
- LED indicator
- Head-up display
- Thermal imaging camera
- Front camera
- Adaptive LED headlights
- Dynamic LED indicator
- Infotainment display
- Driver information display

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Seeing further ahead: the combination of LED and laser light sources enables an optimum for roadway illumination in every traffic situation.

LIGHT CONE OF HEADLIGHTS

- **LED headlights**: intelligent illumination to prevent glaring for oncoming traffic.
- **LED high beams**: large-scale illumination of the traffic situation.
- **Laser high beams**: wide illumination for an optimal vision.

LASER HIGH BEAMS

- 3 blue laser diodes
- Color converter
- Deflection mirror
- Beam combiner
- Parabolic mirror
LED vs Halogen

<table>
<thead>
<tr>
<th></th>
<th>LED</th>
<th>Halogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>hours shelf life</td>
<td>60,000</td>
<td>2,500</td>
</tr>
<tr>
<td>typical connected load per lamp (W)</td>
<td>18</td>
<td>65</td>
</tr>
</tbody>
</table>

The PAPI display signals the correct approach angle.

- too high (more than 3.5°)
- slightly too high (from 3.2°)
- correct approach angle (3°)
- slightly too low (from 2.8°)
- too low (more than 2.5°)

Precision Approach Path Indicator (PAPI)

Runway threshold lights

Stop bar lights

Taxiway centerline lights

Taxiway edge lights

Runway guard lights

Runway end lights

Touch-down zone lights around 900 m

Side row lights around 300 m

Approach lights around 900 m

Runway at least 1.8 km

Millions of new LED lamps lower the operation and maintenance costs of airports around the globe.
Solar cells can transform sunlight directly into electricity. An efficiency of around 45% has already been achieved under laboratory conditions. In commercial use, efficiency has to be weighed against acquisition costs.

Basic Commercial Types

Monocrystalline silicon cells
are cut out from a round silicon crystal. The missing corners of the squares are characteristic. This form is created because the round cross section of the raw material is exploited in the best possible way.

Polycrystalline silicon cells
feature a characteristic texture that comes from crystal borders that are very close together.

Thin-film cells
consist of amorphous silicone or other material compounds. They can be vapor deposited onto carrier materials, even onto flexible material.
Solar cells can transform sunlight directly into electricity. An efficiency of around 45% has already been achieved under laboratory conditions. In commercial use, efficiency has to be weighed against acquisition costs.

Monocrystalline silicon cells are cut out from a round silicon crystal. The missing corners of the squares are characteristic. This form is created because the round cross section of the raw material is exploited in the best possible way.

Polycrystalline silicon cells feature a characteristic texture that comes from crystal borders that are very close together.

Thin-film cells consist of amorphous silicon or other material compounds. They can be vapor deposited onto carrier materials, even onto flexible material.

GLOBAL MARKET SHARE

- Monocrystallines: 54%
- Polycrystalline: 36%
- Thin layer: 10%

CHARACTERISTICS

- **Monocrystallines**
 - Efficiency: 20%
 - Acquisition costs: 16%

- **Polycrystalline**
 - Efficiency: 13%
 - Acquisition costs: 8%

- **Thin layer**
 - Copper indium diselenide: 16%
 - Amorphous silicon: 8%
Solar energy has the potential to satisfy the world’s raising appetite for electricity without polluting the environment. What total size of solar power plants would be needed to run the United States on solar electricity?

US electricity consumption per year: 4093 TWh (2014)

Area of solar cells needed to supply this energy:

12,800 km²

This roughly equals the land area of the US state of Connecticut.

TOP PRODUCERS
installed power 2014 per capita in watts

- Germany: 475
- Italy: 303
- Belgium: 275
Solar energy has the potential to satisfy the world's raising appetite for electricity without polluting the environment. What total size of solar power plants would be needed to run the United States on solar electricity?

PRODUCTION COMPARISON 2014

World photovoltaic energy per year
180 Terawatt hours
= 180,000,000,000 kilowatt hours

Nuclear energy
The photovoltaic energy produced corresponds to the electricity volume of 20 nuclear power stations.

Crude oil
With regard to petroleum, the equivalent is 42 million tons. This amount corresponds to 140 oil tankers with a capacity of 300,000 GRT* each.

* gross register tons
ENVIRONMENT
OPTICAL MEASUREMENTS IN CITIZEN PROJECTS

Smartphones with attachable mini-spectrometers make it possible to map current environmental data of entire countries with the help of thousands of citizens.
FINE DUST PARTICLES
get into the air from different sources

CENTRAL DATA EVALUATION
evaluation concerning the amount, particle size, and composition

MAPPED DATA THAT IS ACCURATE IN TIME AND LOCATION
example: the Netherlands

POLLLUTION
very strong very low

Smartphones with attachable mini-spectrometers make it possible to map current environmental data of entire countries with the help of thousands of citizens.
FOREST FIRE SURVEILLANCE

Automated optical sensor systems monitor large forest areas day and night for fires.

EXAMPLE
surveillance of the Teltow-Fläming county, near Berlin, Germany

Coverage of an area of **310,000 ha** with **10 SYSTEMS** on fire watchtowers
Automated optical sensor systems monitor large forest areas day and night for fires. The optical sensor system registers smoke development automatically in the visible and infrared spectral range. The camera turns itself in stages on its own axis over 6 minutes.

The FOREST FIRE ALARM CONTROL CENTER receives data and images if a fire is detected.

OPTICAL SENSOR SYSTEM

15 km
92 km
55 km

Camera angle of vision: 60° per minute

Area being monitored: 310,000 ha

10 systems on fire watchtowers

Optics for night-time operation
Optics for day-time operation
Efficient sorting facilities are used to recover many materials in their raw form from heaps of domestic waste. Together with fast image processing software, multispectral cameras capture within a split second what should be placed in which raw material container.
Efficient sorting facilities are used to recover many materials in their raw form from heaps of domestic waste. Together with fast image processing software, multispectral cameras capture within a split second what should be placed in which raw material container.

The process involves:
- **Identification of Materials**
 - Paper & Cardboard
 - Plastic Containers
 - Impurities
- **Object Recognition and Visualization of Bottles**
 - PET
 - PE (Polyethylene)
 - PP (Polypropylene)
 - PET + PVC
 - PET + PP
 - PET + PS

The diagram shows a conveyor belt with sorting bins for different materials, with details on line lighting, conveyor belt speed (3 meters per second), and conveyor belt width (2 meters).
PHOTONICS AS AN INDUSTRY SECTOR

Within a few decades, the term photonics has developed from a technical term, used in research, to an industry term that encompasses all technical applications of light.

From the 1960s:
- Photons are researched as an alternative to electrons for circuitry tasks. The term Photonics is coined in connection with this.

Invention of the laser

Leading US industry magazine changes its name from Optical Spectra to Photonics Spectra
Within a few decades, the term photonics has developed from a technical term, used in research, to an industry term that encompasses all technical applications of light.

- **Photonics21 Roadmap** as strategy for European photonics in the years 2014-2020
- **Foundation of the American National Photonics Initiative** to promote photonics in the US
- **In the context of the high-tech strategy for Germany**, photonics replaces the term of “optical technologies” which had been used so far
- **European Commission** defines photonics as key technology
- **Foundation of the European photonics community** Photonics21
- **Leading German industry magazine** changes its name from LaserOpto to Photonik
- **Public Private Partnership** between European Commission and European photonics industry

Historical Events
- **1960s**: Photons are researched as an alternative to electrons for circuitry tasks. The term Photonics is coined in connection with this.
- **1975**: Invention of the laser
- **1980s**: European Commission defines photonics as key technology
- **1990s**: Foundation of the European photonics community Photonics21
- **2000s**: Leading German industry magazine changes its name from LaserOpto to Photonik
- **2010s**: Photonics21 Roadmap as strategy for European photonics in the years 2014-2020
- **2015**: Public Private Partnership between European Commission and European photonics industry

Language Affiliations
- **English**
- **French**: Photonique
- **Spanish**: Fotónica
- **Italian**: Fotônica
- **German**: Photonik
- **Chinese**: Fotonica
- **Japanese**: Fotonika
- **Russian**: Fotonika
- **Portuguese**: Fotônica
PHOTONICS AROUND THE GLOBE

Photonics is a global industry today. This graphic shows the strongest market segments in each region.

Global market share in the market segment (information in %)
To emphasize regional strengths, only market shares of more than 10% are shown.

Market segments
- production technology
- image processing & metrology
- security & defense technology
Photonics is a global industry today. This graphic shows the strongest market segments in each region.
NOBEL LAUREATES

Nobel laureates with a connection to photonics since the invention of the laser in 1960.

NUMBER OF LAUREATES
by country at the time of the award ceremony

- Russia (RU) 1
- Soviet Union (SU) 2
- Japan (JP) 2
- Great Britain (GB) 3
- France (FR) 3
- Germany (DE) 3
- US 17

NOBEL LAUREATES
with award-winning research projects

- Charles H. Townes (US), Nicolay G. Basov (SU), Aleksandr M. Prokhorov (SU) 1965
 quantum electronics for the construction of the maser and laser
- Alfred Kastler (FR) 1966
 optical pumping
- Dennis Gabor (GB) 1971
 holography
- Nicolaas Bloembergen (US), Arthur L. Schawlow (US) 1981
 laser spectroscopy
- Ernst Ruska (DE) 1986
 electron microscope
- Eric Betzig (US), William E. Moerner (US), Stefan W. Hell (DE) 2014
 super-resolved fluorescence microscopy
- John Lewis Hall (US), Theodor Hänsch (DE) 2012
 high-precision laser spectroscopy
- Willard Boyle (US), George Elwood Smith (US) 2009
 CCD Sensors
The highest density of photonics professionals are found in Europe and East Asia.

Number of photonics professionals in relation to the total workforce of the country (a.u. USA = 100)

- > 500
- 401–500
- 301–400
- 201–300
- 101–200
- 51–100
- 10–50
- < 10 or insufficient data
PHOTONICS SCHOOLS

Business-oriented social media reveal where photonics-savvy professionals got their education.
ECONOMIC IMPACT OF PHOTONICS

Data suggests that there were approximately 2.32 million jobs in photonics in 2015.

Worldwide photonics products market
in US-$ bn.

Photonics marketplace
from components to enabled services

INCREASING VALUE

Increasing value

Core components and materials
Photonic products
Photonic-enabled products
Photonic-enabled services

Market by country
share of market in %

18 Japan
18 Korea
17 USA
16 Taiwan
15 Europe
12 China
4 other

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 30 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
An enthusiasm for photonics can also be implemented in the leisure sector.

- **Activity Tracker** with optical sensor
- **Wheel Spoke Lighting** which displays images that appear to stand still
- **Grid Projection** to detect potholes and obstacles
- **High-Visibility Jacket** with LED direction indicators
- **Helmet Camera**
- **Sports Spectacles with Correcting Curved Glass**
- **Rucksack with Solar Panel**
- **Rear Light Projection** with distance safety alert
SOURCES

01 spectaris.de
02 Wikipedia
03 Wikipedia
04 Wikipedia
05 lbl.gov • bp.com/statisticalreview (2014)
06 Wikipedia
07 Wikipedia
08 photonics.com • spectaris.de
09 blu-raydisc.com
10 schott.com
11 edmundoptics.com
12 trumpf-laser.com
13 spectaris.de
14 zeiss.de
15 bosch.de
16 trumpf-laser.com
17 trumpf.de • rofin.de • coherent.com
18 ilt.fraunhofer.de
19 glasfaser.net • itwissen.info • telos.com
20 esa.eu
21 explainthatstuff.com
22 zeiss.de
23 hhi.fraunhofer.de
24 statista.com • Wikipedia
25 howstuffworks.com