Field Guide to Solar Optics

Julius Yellowhair

SPIE Field Guides Volume FG47

J. Scott Tyo, Series Editor

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Names: Yellowhair, Julius E., author. Title: Field guide to solar optics / Julius Yellowhair. Description: Bellingham, Washington : SPIE Press, [2020] | Includes bibliographical references and index. Identifiers: LCCN 2020009994 | ISBN 9781510636972 (spiral bound) | ISBN 9781510636989 (pdf) Subjects: LCSH: Solar collectors-Optical properties. | Solar energy.

Classification: LCC TJ812 .Y45 2020 | DDC 621.47/2–dc23

LC record available at https://lccn.loc.gov/2020009994

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: 360.676.3290 Fax: 360.647.1445 Email: Books@spie.org Web: www.spie.org

Copyright @ 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing. For undates to this book, visit http://spie.org.au

For updates to this book, visit http://spie.org and type "FG47" in the search field.

In 2004, SPIE launched a new book series under the editorship of Prof. John Greivenkamp, the *SPIE Field Guides*, focused on SPIE's core areas of Optics and Photonics. The idea of these *Field Guides* is to give concise presentations of the key subtopics of a subject area or discipline, typically covering each subtopic on a single page, using the figures, equations, and brief explanations that summarize the key concepts. The aim is to give readers a handy desk or portable reference that provides basic, essential information about principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources.

The series has grown to an extensive collection that covers a range of topics from broad fundamental ones to more specialized areas. Community response to the SPIE Field Guides has been exceptional. The concise and easy-to-use format has made these small-format, spiral-bound books essential references for students and researchers. Many readers tell us that they take their favorite Field Guide with them wherever they go. The popularity of the *Field Guides* led to the expansion of the series into areas of general physics in 2019, with the launch of the sister series of *Field Guides to General Physics*.

The core series continues as the SPIE Field Guides to Optical Sciences and Technologies. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may be best as a supplement to traditional texts for those new to the field.

Introduction to the Series

The SPIE Field Guides are intended to be living documents. The modular page-based presentation format allows them to be updated and expanded. In the future, we will look to expand the use of interactive electronic resources to supplement the printed material. We are interested in your suggestions for new Field Guide topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at **fieldguides@SPIE.org**.

> J. Scott Tyo, Series Editor The University of New South Wales Canberra, Australia

Keep information at your fingertips with these other *SPIE Field Guides*:

- Atmospheric Optics, Second Edition, Larry C. Andrews (Vol. FG41)
- Nonlinear Optics, Peter E. Powers (Vol. FG29)
- Optomechanical Design and Analysis, Katie Schwertz and Jim Burge (Vol. FG26)

Physical Optics, Daniel G. Smith (Vol. FG17)

Radiometry, Barbara G. Grant (Vol. FG23)

Other related titles:

- Energy Harvesting for Low-Power Autonomous Devices and Systems, Jahangir Rastegar and Harbans S. Dhadwal (Vol. TT108)
- Polymer Photovoltaics: A Practical Approach, Frederik C. Krebs (Vol. PM175)
- Power Harvesting via Smart Materials, Ashok K. Batra and Almuatasim Alomari (Vol. PM277)
- Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously, Todd P. Otanicar and Drew DeJarnette (Vol. SL21)
- The Art of Radiometry, James M. Palmer and Barbara G. Grant (Vol. PM184)

Field Guide to Solar Optics

Table of	Contents
----------	----------

Glossary of Symbols and Notation		
Background on Energy and Solar Technologies	1	
Energy Usage and Needs	1	
Energy Resources	2	
Solar Resource	3	
Concentrating Solar Technologies	4	
Photovoltaic Solar Technologies	5	
Other Solar Technologies	6	
Solar Radiation	8	
Sun Properties	8	
Earth Orbit	9	
Earth Celestial Sphere	10	
Earth–Sun Angles	11	
Sun Angular Subtense	12	
Sun Position	13	
Sun Movement	14	
Solar Radiation Energy	15	
Blackbody Radiation	16	
Solar Spectral Irradiance	17	
Terrestrial Solar Spectrum	19	
Direct and Diffuse Radiation	20	
Solar Radiation Data	21	
Solar Radiation Metrology	22	
Radiometry Quantities	23	
Radiometry Basics	24	
Geometrical Considerations	26	
Energy Transfer Example	27	
Etendue	28	
Sources and Surfaces	29	
Fundamentals of Solar Optics	30	
Principles of Reflection and Refraction	30	
Vector Reflection and Refraction	31	
Reflection Coefficients	32	
Transmission Coefficients	33	
Flat Mirrors	34	
Curved Mirrors	35	

Other Curved Surfaces	36
Aberrations in Mirrors	37
Astigmatism	38
Solar Collector Basics	39
Solar Glass	41
Reflective Coatings	42
Concentration Batios	43
Concentration Limit	40
Collector Optics for Solar Technologies	45
Flat Plate Collector	45
Linear Collectors	46
Parabolic Trough System	47
Linear Fresnel Collector	48
Parabolic Collectors	49
Heliostat Collector	50
Heliostat Field	51
Aimpoint	52
Dish Concentrator	53
Sizing a Parabolic Trough Collector Field	54
Sizing a Power Tower Collector Field	55
Fresnel Lens Concentrator	56
Solar Furnace	57
Solar Simulator	58
Another Concentrator Type: Cassegrain	59
Solar Multiple	60
Optical Characterization and Analysis	61
Mirror Surface Slope Error	61
Mirror Shape Error	62
Mirror Specularity	63
Mirror Facet Canting-Alignment Error	64
Facet Canting Adjustment	65
On-Axis Canting Strategy	66
Off-Axis Canting Strategy	67
Tracking and Pointing Errors	68
Sunshape	69
Gravity and Wind Impacts	70
Combined Optical Errors	71

Table of Contents

Shading and Blocking	72
Cosine Losses	73
Intercept Factor	74
Mirror Soiling	75
Atmospheric Attenuation	76
Collector Optical Efficiency	77
System Modeling Approaches	78
Cone Optics	78
Hermite Polynomials	79
Ray Tracing	80
Systems Performance Modeling	81
Metrology Tools	82
Deflectometry Method	82
Deflectometry Surface Determination	84
Laser Scanning System	85
Target Imaging Metrology	86
Beam Characterization System	87
Radiometer and Flux Gauge	88
Reflectometer	89
Emissometers	90
Other Nonimaging Optics and Solar Collectors Secondary Concentrator Other Compound Parabolic Surfaces Waveguides Free-Form Surfaces Metasurfaces Spectral Splitting Optics	91 92 93 94 95 96
Special Topics	97
Solar Glint and Glare	97
Solar Technology Interference	98
Equation Summary	99
Cited References	108
Bibliography of Further Reading	109

Table	\mathbf{of}	Contents
-------	---------------	----------

Online Resources	113
Index	114

The *Field Guide to Solar Optics* consolidates and summarizes optical topics in solar technologies and engineering that are dispersed throughout literature. It also attempts to clarify topics and terms that could be confusing or at times misused.

As with any technology area, optics related to solar technologies can be a wide-ranging field. The topics selected for this field guide are those frequently encountered in solar engineering and research for energy harvesting, particularly for electricity generation. Therefore, the selected topics are slanted toward solar thermal power, or as it is commonly called, concentrating solar power.

The first section provides background on energy needs and usage, and explains where solar technologies fit into the energy mix. Section 2 covers properties of the sun and presents our basic understanding of solar energy collection. The third section introduces optical properties, concepts, and basic components. In Section 4, the various optical systems used in solar engineering are described. Optical systems used for solar energy collection are commonly referred to as collectors (e.g., a collector field)—a term that is frequently used in this field guide. Another term commonly applied in solar collectors is nonimaging optics. The fifth section introduces concepts for characterizing optical components/systems and analysis approaches. Lastly, the measurement tools commonly used in solar engineering and research are described in Section 6.

The fundamentals of each topic are covered. Providing methods or approaches to designs was not the goal of this field guide. However, the fundamental understanding that can be gained from the book can be extended and used for design of components and systems.

> Julius Yellowhair June 2020

a	aperture diameter
A	area
AOD	aerosol optical depth
A_{n}	projected area
AŬ	astronomical unit
В	back focal distance
BCS	beam characterization system
с	speed of light
C_1	first radiation constant in Planck's function
C_2	second radiation constant in Planck's function
\tilde{C}	center of curvature
C	concentration
CCD	charge-coupled device
C_{\max}	maximum concentration ratio
CPC	compound parabolic concentrator
CR_{σ}	geometrical concentration ratio
CR_{0}°	optical concentration ratio
CSP	concentrating solar power
CSR	circumsolar ratio
d	earth-to-sun distance
D	distance or diameter
DNI	direct normal irradiance
E	radiation (light) energy
$E_{\rm DNI}$	solar direct normal irradiance
$E_{ m sun}$	solar irradiance
$E_{\lambda,\mathrm{sun}}$	solar spectral irradiance
f	focal length
F	focal point
F(x, y)	irradiance profile using Hermite polynomials
${F}_{1 ightarrow 2}$	view factor
G2	Star class second brightest
GHI	global horizontal irradiance
GTI	global tilted irradiance
h	hour
h	Planck's constant
Η	heliostat tracking error operator
$H_n(x)$	Hermite polynomials
HPE	Hermite polynomial expansion

HTF	heat transfer fluid
î	incident ray
Ι	radiant intensity
I_{θ}	Lambertian surface intensity
k	Boltzmann's constant
L, l	length
L	radiance
LCOE	levelized cost of energy/electricity
M	radiant exitance
M_{λ}	spectral radiant exitance
n	day of the year (1 to 365)
n_i	index of refraction of optical material
ñ	surface normal vector
Ν	north direction
р	probability density function
Р	power
PV	photovoltaic
$Q_{ m e}$	radiant energy
r, R	radius of curvature
$r_{ m sun}$	sun mean radius
\hat{r}	reflected ray
R	slant range
R	earth-to-sun distance
RMS	root mean square
\hat{S}	optical ray path
\ddot{S}	sun direction unit vector
SCA	solar collector assembly
SCM	solar collector module
\mathbf{SM}	solar multiple
ster	steradian
\hat{t}	transmitted ray
$t_{ m s}$	solar time
T	temperature
TES	thermal energy storage
TMY	typical meteorological year
u_{λ}	spectral energy density
V	dwarf star designation
α	absorptance
α	sun altitude angle

β	reflected beam angle spread
γ	sun azimuth angle
γ	intercept factor
δ	declination angle
ε	bolt thread count
Ē	heliostat tracking errors
$\varepsilon_{\rm d}$	directional emittance
$\epsilon_{\rm H}$	hemispherical emittance
η	efficiency
$\eta_{\rm E}$	insolation weighted efficiency
η_{atm}	atmospheric attenuation efficiency
η_{block}	heliostat blocking efficiency
η_{cosine}	cosine efficiency
η_{field}	collector field efficiency
$\eta_{optical}$	optical efficiency
η_{reflect}	reflectance (soiling) efficiency
η_{shade}	heliostat shading efficiency
θ	projection angle
$\theta_{\rm B}$	Brewster's angle
θ_{c}	critical angle
θ_{i}	angle of incidence
θ_{r}	angle of reflection
θ_{s}	sun half angle
θ_{t}	angle of transmission
λ	radiation (light) wavelength
λ_{peak}	peak wavelength (Wien's displacement law)
v	radiation (light) frequency
π	pi
$ ho_{s,p}$	reflectivity in s and p light polarizations
ρ, ρ_t	total reflectance
$ ho_{\rm d}$	directional reflectance
σ	mirror slope error, specularity
σ	optical error
σ	Stefan–Boltzmann constant
$\tau_{s,p}$	transmissivity in s and p light polarizations
τ, τ_t	total transmittance
φ	camera pixel phase angle
φ	sun latitude angle
$\phi_{\rm r}$	concentrator rim angle

4	and and and
ϕ_{s}	sun subtended angle
$\phi(\theta)$	sunshape
$\varphi(r)$	local material phase
Φ	radiant power or flux
χ	circumsolar ratio
ψ	ground cover ratio
ω	sun hour angle
$\omega_{\rm s}$	solid angle