INDEX

A

Abbe sine condition, 162
Abbe V-value, 93
aberration, $74,164,166,168,174$, 178, 181, 188, 191, 195, 211-213, 219-222, 227, 241, 245
angular ray, 221-224, 228, 247
of the Galilean telescope, 225
of infrared afocal system, 249
balancing, 82
bending for minimum spherical, 149, 158
chromatic, 204
coma, 76
higher-order, $82,85,169,174,177$ 201-202
longitudinal, 45
minimum spherical, 149-154, 158
monochromatic, 74
of centered optical systems, 70
off axis, 161, 165, 257, 260
Seidel, 107
pupil, 81
ray, 65
secondary, 82
Seidel, 44, 74
monochromatic, 233
spherical, 74-76, 82, 203, 234-241, 249,253-259, 262, 265-268, 272, 276
third order, 27, 74-75, 82-86, 102, 107, 113, 202
transverse ray, 45-46, 66-68, 83-85, 131, 134, 139-159
wavefront, 45, 55-57, 63-65, 68
achromatic doublet, 91-97, 167, 183
achromatized
Ramsden, 214
Schmidt camera, 268
afocal system, 29, 81, 164, 209-212, 219, 224, 227, 247-249
angle of incidence, $2-3,39,42,48$, 53, 105-109, 254
angle of refraction, $2,48,53$
angular magnification, 28-30, 81, 210, 219, 226
aperture stop, 6-8, 26, 41, 45, 97, 115-16, 142, 153, 159-161, 165, 209, 212, 267, 270-272
aplanatic surface, 122-125, 149, 164, 170, 195
aspheric
infrared germanium lens, 234-236
Petzval lens, 241
plate, 159-161, 267
surface, $57,120,128,157-162$, 233-236, 239, 241-242, 253, 256, 258, 259, 261, 262, 263, 264, 266, 268, 269, 271
refracting, 164, 254
astigmatism, 72-74, 77-79, 85, $107,112,119,131-135,142$, 152-154, 158-159, 165, 167-171, 179, 183-188, 194, 203, 212-221, 234, 240, 249, 255-257, 260-263, 267, 270, 276
asymmetric, 205
axial color, 92, 97, 111-114, 145, 151-152, 157-159, 165, 167, 169-171, 179, 214-215, 233-234, 241, 259, 276
axicon, 14

B

back focal length, 24-25, 200
baffles, 255
beam expanders, 28, 226
balancing
aberration, 82
astigmatism, 85
coma, 83
distortion, 86
bending for minimum spherical aberration, 148, 156

C

Canzek-Mangin system, 276-278
Cassegrain telescope, 163
field corrector for, 257
cardinal points, 18,32
catadioptric systems, 130, 253-255
cemented doublet, 151, 170-171, 177-178, 182, 183, 187-189, 214, 268
chief ray, 7, 26-27, 40-42, 44, 45, 55-56, 63, 67, 78-87, 97, 101-102, 107-108, 112-115, 126, 135-136, 139, 146, 157, 201, 212-211, 217, 221-222
chromatic aberration, 204
coma, 72-73, 74-76, 86, 88, 142, $149,152-153,158,162-166,170$, 184-186, 194-195, 199-205, 213, 216, 255-262, 267, 270, 276
aberration, 76
corrector for tranverse, 260
balancing, 83
corrector for a parabolic mirror, 259
tangential, 241
concentric, 149, 165
conic constant, 11, 14
conjugate
factor, 140-142, 150
finite, 65,79
infinite, 65, 80
parameter, 152
points, 20, 21
shift effects, 136-137

Conrady chromatic aberration
formula, 97-100, 111
convergence angle, 6
Cooke triplet, 114, 199-204
coordinate system, 1,50, 61
crown glass, 151, 170-172
crown-first doublet, 171-172, 175
curvature, $9,14,23,39,58,102$, 110-112, 120-121, 126-128, 139, 155, 165, 200, 254-255, 267, 270-272
curved field, 186, 192, 217

D

defocus, 69, 77, 81, 83-84, 221, 227
diffraction, 64, 68, 75, 87
limit, 90, 101
direction cosines, 50-53, 60-61
dispersion, 91-97, 122, 145, 157, 171, 204-205, 268
low, 232-233
crown, 233
partial, 95-96
distortion, 79-82, 86, 108, 120, 127-131, 144, 159, 165, 195, 199-201, 204, 208, 212-213, 267
at finite conjugates, 80
fifth-order, 86
pupil, 135
third-order, 79

E

eccentricity, 41
ellipsoid, 10
hyperboloid, 13
entrance pupil, 7, 29-30, 65-71, 81, 113, 126, 135, 163-164, 210-211, 247, 249
equivalent focal length, 32
Erfle eyepiece, 217-218
exit pupil, 7-8, 29-30, 64, 71, 135, 164, 209-212, 221, 226, 247
eyepieces, 8, 209-217
eye relief, 209-211, 214, 217-219, 222, 226

F

f/numbers, 262
Fermat's principle, 4-5, 63, 99
field
angle, 78-79, 82, 85-84, 88-89, 113, 129, 134, 165, 183-186, 191, 204-208, 210, 212-217,
221, 241, 249, 263, 272
corrector, 265, 276
for a Cassegrain telescope, 257
for a hyperbolic mirror, 265
for a parabolic mirror, 260
for a paraboloidal mirror, 260
for a Ritchey-Chrétien telescope, 263-264
curvature, 72-74, 79-81, 88, 107, 110, 121-122, 127, 143, 153, 159, 162, 165, 168-169, 173, 178, 182, 184-185, 188-193, 201-204, 212, 247 217-221, 226, 254-255, 267, 270-272, 276
flattener, 128, 191-193
lens, 247, 267
stop, 8, 220, 224
fifth-order
distortion, 86
finite conjugates, 29-30, 162
first-order
optics, 74
paraxial, 92
first principal
focus, 19-20, 30
plane, 19
point, 19
flint glass, 151, 170-171, 233
focal
length, 24, 93-94, 97, 163, 182, 185, 200-202, 210-211, 214, $219,222,226,253,259$
equivalent, 32
planes, 174, 207
sagittal, lines, 79
shift, 97, 146
tangential, lines, 79
focus, 19-20, 30, 92, 97, 128, 191 250, 257-268, 279
paraxial, 76, 80-81
f -theta lenses, 81

G

Galilean telescope, 224, 225, 226
Gauss doublet, 177, 179-181
Gaussian
optics, 17
region, 17
geometrical
approximation, 88
modulation transfer function (MTF), 89
optics, 1, 64, 88, 101
wavefront, 55
germanium, 150, 153, 232-240, 244, 247
Petzval lens, 240-242
silicon triplet, 245-246
triplet, 242-244
glass choice, 171, 177

H

higher-order
aberrations, $75,82,85,169,174$, 177, 186, 201-202
astigmatism, 85
sagittal oblique spherical aberration (SOBSA), 188
tangential oblique spherical
aberration (TOBSA), 188
hyperbolic mirror
field corrector for, 265
hyperboloid, 10-14, 262, 265
hyperboloidal secondary mirror, 163, 255

I

image
curvature, 186, 212
space, 18-22, 29-33, 55, 65, 81, 98, 116, 132, 141, 212
surface, 79, 207
infrared
afocal system, 247-248
detectors, 247
materials, 249-250
wavelengths, 153
interstitium, 37

K

Kellner eyepiece, 214-215

L

Lagrange invariant, 25-32, 40-41, $107,113,141,161,169,172$, 175, 178, 180, 185, 201, 213-218, 221, 223, 225, 228, 235, 237, 239, 241, 243, 245, 248, 256, 258, 259, 261, 263, 264, 266, 268, 269, 271, 273, 275, 277, 280
lateral
color, 97, 100, 111-112, 120-122, 129, 146, 153, 158-159, 165-166, 170, 195, 201, 211-217, 226, 260, 270
image shift, 74
longitudinal aberrations, 45
low dispersion, 232-233
crown, 233

M

magnification, 20, 27-30, 129, 137, 141, 148-199, 153, 156, 162-166
magnifiers, 226-227
Malus, 63
and Dupin theorem, 5-6
Maksutov-Bouwers, 272-274
Cassegrain system, 272
Mangin
mirror, 255, 274, 276
system, 279
marginal ray, 7, 25-28, 39-42, 64,

102, 107-109, 114-117, 126, 135, 163, 184, 191, 221
meridian
plane, 7, 67, 71-73, 78
rays, 188
microscope objective, 125-126, 149
minimum spherical aberration, 148-153, 156
bending for, 149,158
mirror, 4, 71, 82, 253-262, 265-267, 270-276, 279-282
modulation transfer function (MTF), 86, 188
monochromatic aberrations, 74,147
Seidel, 233

N

Narcissus effect, 249
Newton's conjugate distance equation, 30-31
nodal points, 18-21, 33, 37
normal to the surface, 2,60
numerical aperture, $65,68,87,90$, $116,126,168-169,219$

0

object
space, 7, 18-21, 29-33, 46, $65,81,98,141,233,247-249$
surface, 65
objective, 81, 85-86, 113, 168, 171, 183-185, 191, 194, 195, 200-202, 209-212, 219, 220-226, 247
off-axis aberrations, 107, 161, 165, 168, 257, 260
optical glass, 93-94
optical path difference (OPD), 55, 69, 98, 110
optical path length, 4-5, 22, 99
optical transfer function, 67, 86-87, 90
optics
first-order, 74
Gaussian, 17
geometrical, 1, 64, 88, 101
paraxial, 17, 27, 45
overcorrected aberrations, 128

P

parabolic mirror, 265
paraboloid, 10, 259, 267, 281-282
paraboloidal primary mirror, 163
field corrector for, 260
paraxial,
chief ray, 26-27, 139, 161
first order, 92
focus, 76, 80-83
foci, 269
image
plane, $70,79,85,134$
size, 83
marginal ray, 26, 139, 161
optics, $17,27,45$
surface, 70, 86
ray, $21-25,102,105-106,111$, $116,121-122,139,162,164$, 175
tracing, 23-26, 34
region, 45, 63
value, 188
partial dispersion, 95-96
Petzval
lens, 158, 183-193, 205, 226
objective, 191
sum, $127,130-134,154-156,159$, $169,184,189-191,194,199-200$, 249
surface, 132-135, 154
primary
aberrations, 81
mirror, 163
principal
planes, 19-20, 35-37
points, 18, 29, 33-35
pupil, 6-7, 91-93, 186-188, 206, 247, 267
aberrations, 81, 135-136
astigmatism, 135
coma, 135
distortion, 135
entrance, 29, 81
exit, 29
field curvature, 135
sheared, 88

Q

quadrics of revolution, 10

R

ray, $17-44,97-100,144,150,173$, $178,188,192$
abberated, 63, 66,
angular, 221-224, 228
chief, 27, 40-41, 46, 55-56, $63,67,78-81,97$
coordinates, 64
marginal, 27, 40-41, 64
meridian, 75
parallel, 34, 39
paraxial, 17, 21, 23-26, 34, 38, $102,105-107,112,118$, 123-124
chief, 26-27, 40-42, 44, 46, 55-57, 63, 67-68, 81-84, 97, 101-102, 108, 113, 116-117, $128,138-139,140,147,159$
first order, 92
marginal, 26-28, 39, 42, 221
sagittal, 75
skew, 46-48, 55, 67
tracing, 45-61, 66, 97, 99, 101, $110,116,131,160,169,255$
at reflecting surfaces, 61
paraxial, 25-26
trigonometric, 47
transverse, 63-65
reference sphere, 55-56, 63-64, 102-104
reflecting surface, $3,18,130,254$
refracting surface, $5,21-23,48,57$, $102,162,255$
refraction invariant, 39-40, 114
refractive index, 1-6, 55, 91-100, $109,125,129,139-141,144$, 149-155, 162, 171, 189, 194, 205, 232-233, 250, 267
relative pupil coordinates, 64
relative ray coordinates, 68
Ritchey-Crétien telescopes, 163, 262, 265
field corrector for, 263-264

S

sagittal
astigmatism, 85
curve, 173, 188, 203
focal lines, 79
foci, 184
focus, 78
image surface, 133-134, 184, 188, 207
plane, 134
rays, 75
section, 67-68, 75-78, 185
surface, 154
Schmidt cameras, 162, 267-270
field-flattened, 270
Schott optical glass, 94, 96, 151, 202
secondary
aberration, 82
mirror, 163
spectrum, $94,173,182,260$
second principal, 19
Seidel
aberrations, 44, 74, 101-138
140-142, 146-147, 152, 160, 161-162, 186, 194, 199-201, 205, 255, 275
monochromatic, 233
off-axis, 107
third-order, 162
analysis, 184
chromatic aberration coefficients, 162
coefficient, 185
for astigmatism, 142
for field curvature, 143
of axial color, 145
of coma, 142
of distortion, 144
of lateral color, 146
of spherical aberration, 142
difference formulae, 161
theory, $130,139,174,199$, 253-254
separated lenses, 154
shape factor, 139-142, 147-148, 151-153, 200-201
sheared pupil, 88
sign convention, $3,17,23$
Sine condition, 162-164
for the afocal case, 167
in the finite conjugate, 162
with the object at infinity, 163
skew rays, 46-48, 55, 67, 188
Snell's law, 2-4, 39, 45-49,53-54 $60,105,110,126$
spatial frequency, 67, 86-89, 174, 195, 249
spheres, 8
spherical
aberration, 72-75, 85-88, 102-103,112-114, 122-130, 135-137, 142, 148-156, 158, 162, 163, 170-173, 177-178, 182, 184-188, 203, 234-241, 249, 253-259, 262, 265-268, 272, 276
higher-order, $75,82,85,169,174$, 177, 186, 201-202
mirrors, 129
sagittal oblique, 188
surface, 160
tangential oblique, 188
spherochromatism, 100, 177-178, 267-268
split doublets, 177
splitting lenses, 156
spot diagrams, 69-71, 75-78, 89, 99, 101, 173-175, 177-179, 234-246, 273-275, 278, 281
surface
aplanatic, 122-125, 149, 164, 170, 195
aspheric, $57,120,128,157-162$, 233-236, 239, 241-242, 253, 256, 258, 259, 261, 262, 263, 264, 266, 268, 269, 271
image, 79, 207
normal to, 2, 60
object, 65
paraxial, 70, 86
at reflecting, 61
Petzval, 132-135, 154
reflecting, 3, 18, 130, 254
refracting, 5, 21-23, 48, 57, 102, 162, 255
sagittal, 154
image, 133-134, 184, 188, 207
spherical, 160
tangential, 154
image, 133-134, 188
toroidal, 57

T

tangential
astigmatism, 85, 185
coma, 241
curve, 173, 179, 186-188, 203
foci, 184
focus, 78
image surface, 133-134, 188
flat, 184
plane, 131
section, 67, 75, 77-78, 83, 206
surface, 154
telephoto lens, 158, 193-197, 279-282
telescope objective, 97
thermal imaging lenses, 153
thick lens, 20, 33, 35-36, 92, 155
thin lens, $33,38,92,97,111,122$, 139-157, 168-169, 177, 183, 189, 193
third-order
aberrations, 27, 75-76, 85-89, $102,106,112,159,170,175$, 202
spherical, 194
astigmatism, 133
distortion, 79, 86
through-focus, 75-78
toroidal surface, 57
transverse
aberration, 45-46, 63-68, 77, 83-85, 129-131, 134, 168, 173-175, 180, 185, 188, 190, 193, 197, 203-207
of coma corrector, 260
of field corrector, 258, 261, 267
for a Cassegrain telescope, 258
for a Ritchey-Chrétien telescope, 265
of the achromatized Schmidt camera, 270
of the Canzek Mangin system, 278
of the field-flattened Schmidt camera, 271
of the Maksutov-Bouwers Cassegrain system., 273
of the Ritchey-Chrétien telescope, 263
of the Schmidt camera, 269
of the Wiedemann-Mangin mirror system, 275
magnification, 28
trigonometric ray tracing, 47
triplet, 113, 194-195, 199-208

U

undercorrected aberrations, 128
unit magnification, 19-20

V

vignetting, 65, 67, 186, 206-207
V-values of glass, 169

W

wavefront, 5-6, 178, 182
aberration, 45, 55, 63-78, 83-88, 71-77, 101-116, 130-131, 91, 99-100, 146, 159, 165, 262
geometrical, 55
Wiedemann-Mangin, 274-276
Wiedemann-Mangin mirror, 274, 275
Z
zero Seidel conditions, 126

Michael Kidger was born in Birmingham, England, on July 6, 1937. He achieved scholarships at the age of 17 to Imperial College, London, where he graduated in 1958, and was awarded an MSc in Applied Optics in 1959. He spent a short time in industry with the optical firm Taylor,Taylor and Hobson of Leicester. In 1963 he joined the optical design team at Imperial College under Professor Charles Wynne. In 1966 he accompanied Wynne to work on bubble chamber optics at the Brookhaven Laboratories. In 1967 Kidger was appointed lecturer in the applied optics section of Imperial College - a post he held for 20 years. He retained a part-time teaching post at IC and left in 1987 after an association lasting 33 years. His PhD dissertation, "The Application of Electronic Computers to the Design of Optical Systems, Including Aspheric Lenses," was published in 1971. In 1982 he formed the company Kidger Optics Ltd. with his wife Tina. He was a regular participant and exhibitor at SPIE meetings and served on several SPIE committees, including the Scholarship Committee. He gave optical design courses worldwide up until his death. Michael Kidger died in Australia on February 2, 1998, at the age of 60.

