Library of Congress Cataloging-in-Publication Data

Fest, Eric C.
Stray light analysis and control / Eric Fest.
 pages cm
 Includes bibliographical references and index.
1. Optical instruments—Design and construction. 2. Light—Scattering. I. Title.
QC372.2.D4F47 2013
621.36—dc23
2012049924

Published by

SPIE—The International Society for Optical Engineering
P.O. Box 10
Bellingham, Washington 98227-0010 USA
Phone: +1 360.676.3290
Fax: +1 360.647.1445
Email: spie@spie.org
Web: http://spie.org

Copyright © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thoughts of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.
First printing
Contents

Preface xi

Acknowledgments xv

Chapter 1 Introduction and Terminology 1
1.1 Book Prerequisites 4
1.2 Book Organization 4
1.3 Stray Light Terminology 6
 1.3.1 Stray light paths 6
 1.3.2 Specular and scatter stray light mechanisms 7
 1.3.3 Critical and illuminated surfaces 8
 1.3.4 In-field and out-of-field stray light 8
 1.3.5 Internal and external stray light 9
 1.3.6 “Move it or Block it or Paint/coat it or Clean it” 9
1.4 Summary 10

Chapter 2 Basic Radiometry for Stray Light Analysis 13
2.1 Radiometric Terms 13
 2.1.1 Flux, or power, and radiometric versus photometric units 14
 2.1.2 Reflectance, transmittance, and absorption 16
 2.1.3 Solid angle and projected solid angle 16
 2.1.4 Radiance 18
 2.1.5 Blackbody radiance 18
 2.1.6 Throughput 22
 2.1.7 Intensity 23
 2.1.8 Exitance 23
 2.1.9 Irradiance 24
 2.1.10 Bidirectional scattering distribution function 25
2.2 Radiative Transfer 29
 2.2.1 Point source transmittance 31
 2.2.2 Detector field of view 32
 2.2.3 Veiling glare index 32
2.2.4 Exclusion angle 32
2.2.5 Estimation of stray light using basic radiative transfer 33
2.2.6 Uncertainty of stray light estimates 36
2.3 Detector Responsivity 36
2.3.1 Noise equivalent irradiance 36
2.3.2 Noise equivalent delta temperature 37
2.4 Summary 38

Chapter 3 Basic Ray Tracing for Stray Light Analysis 41

3.1 Building the Stray Light Model 41
3.1.1 Defining optical and mechanical geometry 41
3.1.2 Defining optical properties 43
3.2 Ray Tracing 43
3.2.1 Using ray statistics to quantify speed of convergence 43
3.2.2 Aiming scattered rays to increase the speed of convergence 45
3.2.3 Backward ray tracing 48
3.2.4 Finding stray light paths using detector FOV 49
3.2.5 Determining critical and illuminated surfaces 50
3.2.6 Performing internal stray light calculations 51
3.2.7 Controlling ray ancestry to increase speed of convergence 55
3.2.8 Using Monte Carlo ray splitting to increase speed of convergence 55
3.2.9 Calculating the effect of stray light on modulation transfer function 56
3.3 Summary 58

Chapter 4 Scattering from Optical Surface Roughness and Coatings 61

4.1 Scattering from Uncoated Optical Surface Roughness 62
4.1.1 BSDF from RMS surface roughness 68
4.1.2 BSDF from PSD 70
4.1.3 BSDF from empirical fits to measured data 71
4.1.4 Artifacts from roughness scatter 72
4.2 Scattering from Coated Optical Surface Roughness 73
4.3 Scattering from Scratches and Digs 75
4.4 Summary 75

Chapter 5 Scattering from Particulate Contaminants 77

5.1 Scattering from Spherical Particles (Mie Scatter Theory) 78
5.2 Particle Density Function Models 80
5.2.1 The IEST CC1246D cleanliness standard 81
5.2.2 Measured (tabulated) distribution 87
5.2.3 Determining the particle density function using typical cleanliness levels, fallout rates, or direct measurement 87
 5.2.3.1 Use of typical cleanliness levels 89
 5.2.3.2 Use of fallout rates (uncleaned surfaces only) 89
 5.2.3.3 Use of a measured (tabulated) density function 90
5.3 BSDF Models 91
 5.3.1 BSDF from PAC 91
 5.3.2 BSDF from Mie scatter calculations 92
 5.3.3 BSDF from empirical fits to measured data 92
 5.3.4 Determining the uncertainty in BSDF from the uncertainty in particle density function 92
 5.3.5 Artifacts from contamination scatter 93
5.4 Comparison of Scatter from Contaminants and Scatter from Surface Roughness 95
5.5 Scattering from Inclusions in Bulk Media 95
5.6 Molecular Contamination 98
5.7 Summary 98

Chapter 6 Scattering from Black Surface Treatments 101
6.1 Physics of Scattering from Black Surface Treatments 102
 6.1.1 BRDF from empirical fits to measured data 104
 6.1.2 Using published BRDF data 109
 6.1.3 Artifacts from black surface treatment scatter 111
6.2 Selection Criteria for Black Surface Treatments 112
 6.2.1 Absorption in the sensor waveband 113
 6.2.2 Specularity at high AOIs 113
 6.2.3 Particulate contamination 114
 6.2.4 Molecular contamination 114
 6.2.5 Conductivity 114
6.3 Types of Black Surface Treatments 114
 6.3.1 Appliqués 115
 6.3.2 Treatments that reduce surface thickness 115
 6.3.3 Treatments that increase surface thickness 116
 6.3.3.1 Painting 116
 6.3.3.2 Fused powders 116
 6.3.3.3 Black oxide coatings 119
 6.3.3.4 Anodize 119
6.4 Survey of Widely Used Black Surface Treatments 120
6.5 Summary 120

Chapter 7 Ghost Reflections, Aperture Diffraction, and Diffraction from Diffractive Optical Elements 123
7.1 Ghost Reflections 123
 7.1.1 Reflectance of uncoated and coated surfaces 124
7.1.1.1 Uncoated surfaces 124
7.1.1.2 Coated surfaces 125
7.1.2 Reflectance from typical values 126
7.1.3 Reflectance from the stack definition or predicted performance data 128
7.1.4 Reflectance from measured data 128
7.1.5 Artifacts from ghost reflections 128
7.1.6 “Reflective” ghosts 131
7.2 Aperture Diffraction 132
7.2.1 Aperture diffraction theory 132
7.2.2 Calculation of aperture diffraction in stray light analysis programs 133
7.2.3 Artifacts from aperture diffraction 134
7.2.4 Expressions for wide-angle diffraction calculations 135
7.3 Diffraction from Diffractive Optical Elements 137
7.3.1 DOE diffraction theory 138
7.3.2 Artifacts from DOE diffraction 140
7.3.3 Scattering from DOE transition regions 140
7.4 Summary 142

Chapter 8 Optical Design for Stray Light Control 145
8.1 Use a Field Stop 145
8.2 Use an Unobscured Optical Design 147
8.3 Minimize the Number of Optical Elements between the Aperture Stop and the Focal Plane 148
8.4 Use a Lyot Stop 150
8.4.1 Calculating Lyot stop diameter from analytic expressions 151
8.4.2 Calculating Lyot stop diameter from coherent beam analysis 152
8.5 Use a Pupil Mask to Block Diffraction and Scattering from Struts and Other Obscurations 153
8.6 Minimize Illumination of the Aperture Stop 154
8.7 Minimize the Number of Optical Elements, Especially Refractive Elements 154
8.8 Avoid Optical Elements at Intermediate Images 155
8.9 Avoid Ghosts Focused at the Focal Plane 155
8.10 Minimize Vignetting, Including the Projected Solid Angle of Struts 156
8.11 Use Temporal, Spectral, or Polarization Filters 157
8.12 Use Nonuniformity Compensation and Reflective Warm Shields in IR Systems 157
8.13 Summary 160
Preface

In 1741, the great Swiss mathematician Leonhard Euler was asked by King Frederick the Great of Prussia to write a tutorial on natural philosophy and science for his niece, the Princess of Anhalt-Dessau. Euler agreed and began writing the tutorial as a series of letters to the Princess, about one a week, for nearly 250 weeks. These letters were eventually published as a collection and became some of the first popular science writing.¹

In a letter entitled “Precautions to be observed in the Construction of Telescopes”² (shown in the second figure), Euler recommends that the Princess...
“... (enclose the telescope) in a tube, that no other rays, except those which are transmitted through the objective, may reach the other lenses. ... If by any accident the tube shall be perforated ever so slightly, the extraneous light would confound the representation of the object.”

Excerpts from Leonhard Euler’s tutorial. The figures show the telescope before and after the addition of field stops, which were added for stray light control.

He also suggests that she “[...] blacken, throughout, the inside of the telescope, of the deepest black possible, as it is well known that this colour reflects not the rays of light, be they ever so powerful”.

Though he calls them “diaphragms” and not field stops, Euler goes on to suggest their use as a further means of “diminishing the unpleasant effect of which I have been speaking.” This unpleasant effect is, of course, what we now call stray light, and this letter shows that it was identified as a problem hundreds of years ago. It is remarkable that the methods Euler discussed to control it (i.e., the use black surface treatments, field stops, and baffles) are still some of the primary methods used to control it today (see Chapters 6, 8, and 9, respectively). Of course, some things have changed; Euler and the Princess didn’t have the massive computing power we have today, and therefore were unable to predict the stray light performance of a telescope to the accuracy that is now possible. In addition, the occurrence of stray light in their telescope was an “unpleasant effect” and was not as serious a
problem as, say, the loss of scientific data due to stray light in a multi-billion-dollar space-based telescope.

However, the letter shows that the problem and many of its solutions remain the same. The goal of Euler’s letter and of this book are similar: to provide optical engineers with the information and analytical tools necessary to design and build optical systems with sufficient stray light control. In addition to Euler’s letter, there have been hundreds of papers published on the subject, and it is impossible to include the content of all of them here. Therefore, only the content that is most applicable to the task of optical system engineering is discussed. This is an important distinction, as many previous publications deal with the science of optical scattering and stray light, but fewer address the application of this science in engineering practice. This book summarizes the important scientific results, providing references for more detailed study, and then applies these theories to the engineering of optical systems. This book also considers the economics of performing stray light analysis, which is a dimension that is also lacking in the current literature. Sometimes the engineer tasked with performing a stray light analysis has months of time and a large budget, and other times has 15 minutes and no budget. This book provides tools and solutions for a spectrum of budgets, and quantifies the accuracy associated with each approach.

Eric Fest
Tucson, AZ
February 2013
eric@phobosoptics.com

2. L. Euler and N. de Condorcet, Letters of Euler to a German Princess, on Different Subjects in Physics and Philosophy, Volume 2, H. Hunter, Trans., translated from the French and published by Murray and Highley (1802).
Acknowledgments

Many people helped me write this book, and I’d like to take a moment to thank them.

I’d like to thank Dave Rock, who gave me my first job in optics and, to this day, serves as my role model. Much of the content of this book I learned from him, and I will always be grateful for all he taught me and for the helpful feedback he provided for this book.

I’d like to thank my co-workers, including Chad Martin, John McCloy, Dave Markason, and Dave Jenkins, from whom I’ve learned a tremendous amount about stray light analysis. Special thanks goes to Mike Schaub, who helped me set up the Zemax model of the Maksutov–Cassegrain telescope used throughout this book. I’d also like to thank Scott Sparrold at Edmund Optics, Margy Green at Raytheon, and Michael Dittman at Ball Aerospace for many fruitful discussions and for providing me with some of the material in this book. I’d also like to thank Chris Staats at Schmitt Measurement Systems for teaching me the intricacies of measuring BSDF.

This book probably would not have happened without the help of Rich Pfisterer of Photon Engineering LLC, who encouraged me to write it and provided an excellent model for it in his Stray Light Short Course Notes. Rich also spent many hours reviewing it, and I thank him for his tireless efforts.

I was very fortunate to have the help of Bob Breault of Breault Research Organization, who is one of the founders of the science of stray light analysis and who provided me with many comments and suggestions that greatly improved this book. For the many hours he spent reviewing and discussing it with me, I thank him.

I also owe thanks to the other reviewers of this book, who gave selflessly of their time and by doing so greatly improved it: Scott Ellis, Paul Spyak, Rick Juergens, and Matt Jenkins. I’d also like to thank the people at SPIE Press who made this book a reality, especially the book’s editor, Scott McNeill, who provided invaluable feedback and who was very understanding when I asked for schedule extensions.

Last, but certainly not least, I’d like to thank my wife, Gina, who accommodated my writing schedule with incredible patience. I am extremely fortunate to be married to her.

This book is dedicated to my daughters, Fiona and Marlena.