Index

Symbols

\(a\), see absorptance
\(a\), see absorption attenuation coefficient
\(\beta\), see optical thickness
\(\gamma\), see attenuation coefficient
\(\Delta f\), see noise equivalent bandwidth
\(\epsilon\), see emissivity
\(\eta\), see quantum efficiency
\(\eta_a\), \(\eta_b\), see image fill efficiency
\(\eta_s\), see scanning efficiency
\(\lambda\), see wavelength
\(\lambda_c\), see cutoff wavelength
\(\nu\), see frequency, optical
\(\tilde{\nu}\), see wavenumber
\(\rho\), see reflectance
\(\sigma\), see scattering attenuation coefficient
\(\sigma_r\), see Stefan–Boltzmann constant
\(\sigma_0\), see Stefan–Boltzmann constant
\(\tau\), see transmittance
\(\Phi\), see flux
\(\psi\), see sun geometry factor
\(\omega\), see solid angle, geometric
\(\Omega\), see solid angle, projected
\(\Omega_r\), see field of regard
\(C_v\), see contrast threshold
\(D\), see pupil diameter
\(D'\), see specific detectivity
\(dA\), see elemental area
\(E\), see irradiance
\(E_R\), see bandgap
\(f\), see electrical frequency
\(f\), see focal length
\(F\), see spatial view factor
\(f_n\), see \(f\)-number
\(f_r\), see bidirectional reflection distribution function
\(f_{-3\, \text{dB}}\), see bandwidth, \(-3\, \text{dB}\)

\(h\), see Planck constant
\(h\nu\), see photon energy
\(I\), see intensity
\(I_{ph}\), see photocurrent
\(I_{sat}\), see reverse-bias-saturation current
\(K_\lambda\), see photopic efficacy
\(k_f\), see time-bandwidth product
\(k_n\), see noise equivalent bandwidth
\(L\), see radiance
\(M\), see exitance
\(n\), see index of refraction
\(P_d\), see probability of detection
\(P_n\), see probability of false detection
\(q\), see absolute humidity
\(q\), see quanta
\(\mathcal{R}\), see responsivity
\(R_V\), see meteorological range
\(S\), see sensor response
\(V_\lambda\), see photopic vision
\(V'_\lambda\), see scotopic vision
\(Z_t\), see detector preamplifier gain

A
aberrations, 232–235
 astigmatism, 232
 chromatic, 232
 comatic/coma, 232
 distortion, 235
 field curvature, 235
 spherical, 232
absolute humidity, 123
absorptance
 attenuation coefficient, 99, 110
detector, 242
Kirchhoff’s law, 69
material property, 27
absorption coefficient
direct transition materials, 177
etrinsic semiconductor, 178, 183
free-carrier, 177
indirect transition materials, 177
intrinsic semiconductor, 178, 183
refractive index, 176
spectral, 177
typical curves, 178
Urbach tail, 177
advanced model, see lifecycle phases
aerosols, 112–116
atmospheric transmittance, 113
land, 112
manmade, 112
maritime, 112
meteorological range, 127
Mie scattering, 116
Rayleigh scattering, 115
scattering attenuation coefficient, 128
afocal optics, 236, 237
aliasing, 146, 391, 396–398
angle
 factor, see spatial view factor
linear, 27
solid, 28–35
aperture stop, 222, 232
approximation
 bandgap, 139
 BRDF, 81
grey body, 285
layered atmosphere, 104
Planck law, 64
responsivity, 415
scattering, 114
scotopic efficiency spectral shape, 46
Seebeck coefficient, 160
solid angle, 33, 437, 441
thin lens, 221, 225–227
time bandwidth, 150
transmittance, 108
area
clear aperture, 242
dimensional analysis, 367
elemental, 19
estimation of a flame, 288–290, 352
example calculations, 316, 441–447
pixel footprint, 269
projected, 28–35
solid angle, 28–35, 366
spatial integral, 407–409
sun, 316
areance, see irradiance and exitance
aspheric lens, 237
assumption management, 11
atmosphere, 108–128
absolute humidity, 123
aerosols, 112
attenuation, 108, 110
composition, 108
correlation transmittance, 124–127
definitions, 109
effect on image, 268–272
effective transmittance, 107
looking up/down, 121
meteorological range, 127
Mie scattering, 116
molecular
 absorption, 111–112
 constituents, 111
 transmittance, 113
overview, 110
path radiance, 118–121, 283
LWIR band, 120
MWIR band, 119
NIR band, 118
visual band, 118
radiative transfer codes, 129
Rayleigh scattering, 115
relative humidity, 123
scattering, 112, 127
scattering modes, 114
sky radiance, 283, 398–401
standard profiles, 109
transmittance, 113, 382
water vapor content, 121
windows, 116
LWIR band, 117
MWIR band, 117
NIR band, 117
visual band, 116
attenuation
atmosphere, 108
coefficient, 98–99
avalanche detector, 198
B
background, 256
background-limited operation, 147, 183, 192, 205, 211
baffle, 223
band-limited noise, 142
bandgap, 138–139
Varshni approximation, 139
bandwidth
−3 dB, 262
Butterworth filter, 263
noise equivalent, 262
best practices, 365–373
bidirectional reflection distribution function (BRDF), 80–83
Cook–Torrance model, 82
diffuse reflection, 81
measurements, 83
mirror reflection, 81
modeling approach, 82
Phong model, 82
reflection signatures, 284
specular reflective surface, 327
surface roughness, 76
blackbody
aperture, 75
curves, 68, 69, 72
definition, 59
emissivity, 65
Kirchhoff’s law, 70
laboratory instrument, 59
Lambertian source, 41
Planck’s law, 60–62
Stefan–Boltzmann law, 63
Wien’s displacement law, 62
Bloch functions, 170
bolometer, 155–157
construction, 155
noise, 157
responsivity, 156
Boltzmann probability distribution, 58
book website, xxv, 411
Bouguer’s law, 98
optical thickness, 103
transmittance approximation, 108
transmittance scaling, 108
Bravais lattice, 164
Bunsen burner flame case study
data analysis, 350–355
instrument calibration, 346–348
measurements, 348–350
workflow, 345–350
Butterworth filter, 262
C
carrier lifetime, 179
case study
Bunsen burner flame, 344–355
cloud model, 297–300
flame sensor, 309–311
flame-area estimation, 288
high-temperature flame measurement, 295
infrared scene simulation, 385–401
infrared sensor radiometry, 337–344
laser rangefinder range equation, 321–330
low-emissivity surface measurement, 295
object appearance in an image, 311–314
solar cell, 315–321
sun-glint, 302
temperature cross-over, 300
thermal camera sensitivity, 334–337
thermal imaging sensor model, 330–334
thermally transparent paints, 301
Cassegrain telescope, 236, 237
solid angle worked example, 448
cavity, 57, 74
emissivity, 74
reflectance, 74
chief ray, 224, 230
cloud model case study
measurement, 297
model, 298–300
relative signature contributions, 300
silver-lining factor, 298
worked example in Matlab®, 451
clutter, 256
CODATA constants, see constants
cold finger, 337
cold shield, 338
design, 342
efficiency, 341, 342
collimator, 238–239
colimator, 238–239

Color

coordinates, 48–51
worked example Python™, 430
normalization, 48
Planckian locus, 49
ratio, 291, 398–401
sensitivity to source spectrum, 49
space, CIE 1931, 48
xy chart, CIE, 381
coma, 234
complex lens, see thick lens
concept study, see lifecycle phases
conduction band, 168
conductors, 170
energy bands, 171
configuration factor, see spatial view
factor
conservation of radiance, 35–37

Constants

CODATA, 65
mathematical, 376
physical, 376
Planck law, 66, 377

Contrast

difference, 271
inversion, 300
radiometric, 272
reduction, 102
signature, 398–401
threshold
Koschmieder, 127
World Meteorological Organization, 127
transmittance, 103
atmosphere, 124–127

Conversion

radiometric to photometric, 47
spectral quantities, 26
convolution, 265–267
Cook–Torrance BRDF model, 82
\cos^3, 32, 449
\cos^4, 33
cryogenic coolers, 185

Joule–Thomson, 185–186
Stirling, 186
crystalline materials, 163–179
acceptor doping, 172
basis, 164
conductors, 170
donor doping, 172
energy bands, 165–170
insulators, 170
lattice, 164
n-type material, 171
p-type material, 172
pentavalent, 171
photon-electron interactions, 174–176
physical parameters, 379–380
semiconductors, 170
band structure, 169–170
intrinsic and extrinsic materials, 171–174
light absorption, 176–178
structure, 164
tetravalent, 170, 171
cutoff wavelength, 138

D

data analysis, 292–295
imaging-camera example, 350–355
workflow example, 345–346
definition study, see lifecycle phases
design, 2, 3
prerequisites, 3
process, 12
review, 6
trade off, 1
detection
probability, 259, 272
probability of false, 260
pulse, 272–275
pulse example calculation, 436
range, 267–268, 326
range example calculation, 326–327
detectivity, 147–149, 258
specific, 148, 183, 184, 205, 258
detector
avalanche, 198
conductivity, 188
configurations, 140
cooling, 183–187
gas/liquid cryogen, 185
radiative, 185
thermo-electric, 185
cutoff wavelength, 138
detection process, 136–140
detectivity, see detectivity
dewar, 185
effective responsivity, 148
filter, 338
history, 135–136
intrinsic material, 173
material parameters, 379–380
noise, 140–150, 183
normalized spectral responsivity, 140, 243
peak responsivity, 140, 243
performance modeling, 207–210
photoconductive, 179, 187–193
photon, 138–140
detection process, 179–183
quantum efficiency, 181–183
photovoltaic, 179, 193–207
preamplifier gain, 243
signal voltage, 243
spectral responsivity, 182, 243
technology impact, 210–212
thermal, 136–138, 151–163
wideband responsivity, 261
detector-limited operation, 205, 206
development
optronic sensor systems, 385–386
parallel activities, 7
phase, see lifecycle phases
product, 4
development model, see also lifecycle phases
dewar, 185
difference
contrast, 271–272
noise equivalent temperature (NETD), 247, 259, 332–333
operator, 19
diffuse
reflectance, 76, 81
example visual spectra, 50
Phong BRDF model, 82
signature components, 279–283
reflectance, Phong BRDF, 82
shape factor, see spatial view factor
dimensional analysis, 367–368
example, 454, 461, 462
discrete ordinates, 104
distortion, 234
domain
space, 256
time, 256
doped materials
acceptor doping, 172
concentrations, 174
donor doping, 172
Duntley equations, 101

E
effective, see also normalization
detector responsivity, 148
mass
electron, 379
hole, 379
transmittance, 105–108
example humid atmosphere, 124
example various sources, 107
scaling with range, 108
simulation application, 393
value normalization, 261–262
efficacy
photopic, 47
scotopic, 47
total luminous, 47

efficiency
cold shield, 341
image fill, 331
photopic, 47
quantum, 139
relative luminous, 46
human eye, 47, 378
scanning, 330
scotopic, 47
spectral shape approximation, 46
solar cell, 318
Einstein equation, 180
electrical frequency, 141
electro-optical system
Index

analysis
example, 309–364
pyradi toolkit, 411
definition, 14
examples, 15
functions, 221
high-level design, 15
major components, 14
modeling and simulation, 16
multispectral, 40
simulation application, 385–401

electromagnetic
radiation, 20–22
particle model, 20
wave model, 20
spectrum, 21
electron-hole pair, 179
elemental area, 19
emissivity, 65–74
absorptivity, 69
atmosphere, 120, 121
blackbody, 59
cavity, 74
definitions, 70
directional, 83–86
der example curves, 85
in nature, 85
gas radiator source, 103, 310
grey body, 71
Kirchhoff’s law, 69
low, 73
measurement, 295–296
path radiance, 101–103
practical estimation, 287–288, 344–355
spectral, 71
hemispherical, 84
temporal variation, 390	hermally transparent paint, 301, 302
energy bands, 165–170
bandgap, 165
therm conduction carrier excitation, 183
conduction band, 168
Fermi level, 166, 168
Fermi–Dirac distribution, 166
interband transitions, 174–176
intraband transitions, 174, 175
orbitals, 165
photon-electron interactions, 174–176
semiconductor, 169–170
valence band, 168
wave model, 166–169
Bloch functions, 170
density of states, 166
wave function, 167
equivalent path length, 99
etendue, see throughput
exitance, 24
Lambertian source, 41–42
luminous, 23
noise equivalent (NEM), 247, 259
photon, 23, 60
Planck’s law, 59–62
temperature derivative, 60–62
radiant, 23, 38
relation to radiance, 41
source shape, 44–45
Stefan–Boltzmann law, 63
Wien’s displacement law, 62
experimental model, see lifecycle phases
extended target, 232, 311–314
attenuation coefficient, see attenuation coefficient
extrinsic
detector, see photon detector
detector material, 173
eye spectral response, 46

F
1/ f noise, 142, 145
photoconductive detectors, 191
power spectral density, 145
false alarm rate (FAR), 260
pulse detection, 272–275
calculation in Matlab®, 436
calculation in Python™, 436
example calculation, 273–275
Fermi level, 166, 168
Fermi–Dirac distribution, 166, 167, 173
ferroelectric effect, 157–158
field
angle, 224, 240
curvature, 234, 235
of regard, 330
Index

of view (FOV), 227–232, 240
small angle, 241
stop, 223, 226–232
figures of merit, see performance measures
fill factor, 317
filter
absorption, 240
antisolar, 297
Butterworth, 262
interference, 240
multi-spectral, 39–41
optical, 240
passband, 240
spectral, 240
function, 413–415
spectral response, 223, 240
stopband, 240
transmittance, 240
flame
area calculation in Matlab®, 434
Bunsen burner, 344–355
sensor, 309–311
worked example Matlab®, 417
worked example Python™, 421
temperature measurement, 295
fluctuation noise, 146–147
background flux, 147
signal flux, 146
flux, 24
collecting solid angle, 230, 231
Lambertian source, 41
luminous, 23
photon, 23
radiant, 23
system throughput, 249
transfer, 35–41, 70
geometrical construction, 36
lossless medium, 37–38
lossy medium, 38
multi-spectral, 39–41
radiative transfer equation, 101
worked example, 448–451
f-number (f/#), 229–230
clear aperture area, 242
optics diameter, 242
focal
length, 224
plane, 223, 224
folded optics, 236, 237
foreground, 256
frequency
electrical, 141
optical, 20
relation to wavelength, 20
response
photoconductive detector, 190–191
photovoltaic detector, 202–203
Fresnel reflectance, 77–79
gold surface, 85
full-width-half-maximum (FWHM) bandwidth, 150
G
gaseous radiator, 70–73, 103–104, see also flame
simulation, 389
generation–recombination (g-r) noise, 144–145
photoconductive detectors, 191–192
power spectral density, 145
rms noise current, 144
golden rules, 365–373
Gregorian telescope, 236, 237
grey body, 71–73
I
I-V curve, 196
image, 221, 268
collimated, see collimator
contrast, 102–103, 271
flux-collecting solid angle, 230
focal plane, 223
modulation transfer function, see modulation transfer function (MTF)
object appearance, 311–314
object relationship, 225
optical aberrations, see aberrations
pixel irradiance, 268–271
pixels, 268
plane, 223, 227, 246
field stop, 227
pupil, 227
vignetting, 227
index of refraction, 20
atmosphere, 97
cromatic aberration, 232
complex, 78, 176
Fresnel reflectance, 78
imaginary component, 176
metal, 78
numerical aperture (NA), 229
real component, 176
Snell’s law, 176
wave equation, 176
industrialization, see lifecycle phases
infinite conjugates, 224, 229
clear aperture, 242
collimator, see collimator
f-number, 229
optics diameter, 242
infrared scene simulation, 385–401
application, 387
benefits, 385
image rendering, see rendering OSSIM, 393
radiometric accuracy, 392
rendering equation, 393–396
effective transmittance, 394
signature model, 393
spectral calculation, 394
spectral discretization, 393
wideband calculation, 395
scene model
atmospheric attenuation, 390
gometry, 388
optical signature, 388
temperature, 390
temporal variation, 390
texture, 390
inhomogeneous medium, 104
insulators, 170
intensity, 24
Lambertian source, 42
luminous, 23, 46
photon, 23
radiant, 23, 38
interface electronics noise, 146
intrinsic carrier concentration, 174
intrinsic detector, see photon detector
irradiance, 24
apparent, 244, 265
in an image, 268–271, see also object appearance in an image
luminous, 23
noise equivalent (NEE), 246, 258
see also laser rangefinder example
photon, 23
pixel, 268
radiant, 23, 37
isolators
energy bands, 171
J
Johnson noise, 142–143
frequency spectrum, 143
interface electronics, 146
photoconductive detectors, 191–193
photovoltaic detectors, 204
power spectral density (PSD), 143
K
Kirchhoff’s law, 69
knowledge management, 386
Koschmieder, 127
Kubelka–Munk theory, 100
L
laboratory
blackbody, 59, 75
collimator, 238–239
Lagrange invariant, 249
Lambertian source, 41–42
flux, exitance, radiant, 41
blackbody, 41
definition, 41
intensity, 42
projected solid angle, 42
Index

reflectance, 76, 81
reflected sun radiance, 87
shape, 44–45
signature model, 279–283
spatial view factor, 43
view angle, 42

laser rangefinder
detection range, 326
example calculation
range equation, 326–327
signal-to-noise ratio (SNR), 274
threshold-to-noise ratio (TNR), 274

Lambertian reflective surface, 323–325
noise equivalent irradiance (NEE), 321
range equation case study, 321–330
signal irradiance, 322
specular reflective surface, 327–330
target optical cross section, 324

lifecycle phases, 4–7
light models, 22
light traps, 76
linear angle, 27, 28
long-wave infrared (LWIR), 65
 atmospheric aerosol scattering, 127–128
 atmospheric window, 117
 contrast transmittance, 125
 path radiance, 120

luminance, 25, 46–48
photopic, 47
scotopic, 47

M
marginal ray, 224, 229, 230
material properties, 27
Matlab®, 409

measurement
 bidirectional reflection distribution function (BRDF), 76, 83
 cloud, 297
 data analysis, 292–295
 flame example, 348–350
 instrument calibration, 346–348
 linear angle, 27
 spectroradiometer, 287
 technical performance, 255
 temperature, 73, 290–292, 295, 354
medium, 14
 absorption attenuation coefficient, 99
 atmosphere, 108–128
 attenuation coefficient, 99
 conducting, 78
 discrete ordinates, 104
 equivalent path length, 99
 homogeneous, 98
 index of refraction, 20
 inhomogeneous, 99, 104–105
 lossless, 37–38
 lossy, 38
 optical, 98–104
 optical thickness, 103
 path radiance, 99–103
 scattering attenuation coefficient, 99
 transmittance, 38, 98, 108
medium-wave infrared (MWIR), 65
 atmospheric aerosol scattering, 127–128
 atmospheric window, 117
 contrast transmittance, 125
 path radiance, 119

mesopic vision, 46
meteorological range, 127
microbolometer, 156–157
Mie scattering, 116
minimum detectable temperature (MDT), 259
minimum resolvable temperature (MRT), 259

model, 12
 atmospheric, 129
 BRDF, see bidirectional reflection distribution function (BRDF)
 cloud, 297–300
 detector, 207–210
 example, 208
 discrete ordinates, 104
 electromagnetic wave, 20
 imaging sensor, 240–245, 337–344
 light, 22
photon particle, 22
photovoltaic detectors circuit, 200
signature, 279–283
solar cell, 319–321
solar irradiance, 86
source–medium–sensor, 14
validation, 275
modeling and simulation (M&S), 7, 16, 385–401
Modtran™
description, 129
meteorological range, 127
visibility, 127
modulation transfer function (MTF), 236, 260
multi-spectral, 39–41
N
near-infrared (NIR), 65
atmospheric window, 117
path radiance, 118
Phong BRDF parameters, 285
noise, 245–247, 256
bolometer, 157
considerations in imaging systems, 146
equivalent
 bandwidth, 149–150, 262
 exitance (NEM), 247, 259
 irradiance (NEE), 246, 258
 power (NEP), 147–149, 246, 258
 radiance (NEL), 247, 258
 reflectance (NER), 259
 target contrast (NETC), 335–337
 temperature difference (NETD), 247, 259, 332–333
1/f, 145
fluctuation, 146–147
generation–recombination (g-r), 144–145
interface electronics, 146
Johnson, 142–143
Nyuquist, see Johnson noise
photoconductive detectors, 191–193
photovoltaic detectors, 203–207
physical processes, 140
power spectral density, 141–142
pyroelectric detector, 159
shot, 143–144
system, 141
temperature-fluctuation, 145–146
thermal, see Johnson noise
thermoelectric detector, 161
time-bandwidth product, 150
normalization, 261–263
color coordinates, 48
effective value, 261–262
peak, 262
spatial, 29, 261
weighted mapping, 263
normalized spectral responsivity, 243
n-type material, 171
electron concentration, 174
numerical aperture (NA), 229, 230
O
object
 appearance in an image, 311–314
 worked example Python™, 424
 resolved, 268
 unresolved, 268
open-circuit operation, 198, 200
optics, 223–236
 aberrations, 232–235
 aperture, 226
 aspheric lens, 237
 axis, 224
 chief ray, 224, 230
 collimator, 238
 conjugates, 224
 elements, 222–224
 field
 angle, 224
 stop, 226, 230
 flux collecting, 230
 f-number, 229, 230
 focal
 length, 224
 plane, 223, 224
 frequency, 20
 infinite conjugates, 224, 229
 marginal ray, 224, 229, 230
 medium, 97–104
modulation transfer function (MTF), 236
numerical aperture (NA), 229, 230
point spread function (PSF), 235
power, 223
principal plane, 224
pupil, 226–230
ray tracing, 225
signature, 279–292
model, 279–283
rendering, 387
spectral filter, 240
stray light, 227
system, 236
afocal, 236
Cassegrain, 236
Gregorian, 236
refractive, 236
thick lens, 225
thickness, 103
thin-lens approximation, 224, 225
transfer function (OTF), 236, 260
vignetting, 227, 238
Optronics System Simulation (OSSIM), 393
orbitals, 165

P
paraxial approximation, see thin-lens approximation
particle model, 20
passband, 240
path radiance, 99–103, 118–121
Duntley equations, 100
emissivity, 101–103
Kubelka–Munk theory, 100
LWIR band, 120
MWIR band, 119
NIR band, 118
visual band, 118
Pauli’s exclusion principle, 165, 166, 176
peak responsivity, 243
Peltier effect, 151, 186
performance measures, 10, 255–261
definition, 256
detectivity, 258
false alarm rate (FAR), 260
minimum detectable temperature (MDT), 259
resolvable temperature (MRT), 259
modulation transfer function (MTF), 260
noise equivalent exitance (NEM), 259
irradiance (NEE), 258
power (NEP), 258
radiance (NEL), 258
reflectance (NER), 259
temperature difference (NETD), 259
optical transfer function (OTF), 260
point spread function (PSF), 260
probability of detection, 259
probability of false detection, 260
role, 255
signal-to-clutter ratio (SCR), 257
signal-to-noise ratio (SNR), 257
specific detectivity, 258
Phong BRDF model, 82
phonon, 175–177
photoconductive detector, 179, 187
bias circuitry, 189–190
conductivity, 188
frequency response, 190–191
geometry, 189
noise, 191–193
generation–recombination (g–r), 192
Johnson, 192–193
photoconductive gain, 190
quantum efficiency, 187
responsivity, 189
signal, 187–189
photocurrent, 179, 197, 200, 202, 204, 209
photodiode, see photovoltaic detector
photoemissive detector, see photon detector
photometry, 23, 45–51
units, 45
photon, 22
absorption, 176–178
absorption coefficient, 177–178
detector, 138–140
noise, see noise
operation, 179
quantum efficiency, 139
responsivity, 139
electron interactions, 174
energy, 22
wave packet, 22
photopic
 efficacy, 47
 efficiency, 47
 luminance, 47
 relative spectral efficiency, 378
 vision, 46
photovoltaic detector, 179, 193
background flux, 204
background-limited operation, 205
bias configurations, 197–202
 circuit model, 200
 open-circuit, 200–202
 reverse, 198–200
 short-circuit, 202
construction, 194
depletion region, 194
detector-limited operation
 open-circuit mode, 206–207
 short-circuit mode, 205–206
diffusion current, 197, 204
energy diagrams, 195
frequency response, 202–203
I-V curve, 196–197
noise, 203–207
 Johnson, 204
 shot, 204
noise equivalent power (NEP), 204
optimal power transfer, 202
photocurrent, 204
p-n junction, 194
quantum efficiency, 196
resistance, 204
responsivity, 196
reverse-bias-saturation current, 197
specific detectivity, 205
thermally generated current, 204
vs photoconductive detector, 194
photovoltaic detectors
 energy bands, 198
 physical and mathematical constants, 376
 pixel, 268
 irradiance in an image, 268–271
 signal magnitude, 268
Planck
 constant, 22
 exitance function Matlab®, 412
 exitance function Python™, 412
 law, 57–65
 constants, 377
 derivative exitance, 60–62
 exitance, 60–62
 integrated, 63
 maximum, 62
 summary, 65
 summation approximation, 64
 radiator, 59, 65
Planckian locus, 49
plume, 103
 effective transmittance, 106
 surface radiator, 104
 volume radiator, 104
p-n diode, see photovoltaic detector
p-n junction, 194
point spread function (PSF), 235, 260
point target, 232
Poisson statistics, 144
power spectral density (PSD), 141–142
1/f noise, 142, 145
band-limited noise, 142
combining spectra, 149
generation–recombination (g-r) noise, 145
 Johnson noise, 143
 shot noise, 143
 temperature-fluctuation noise, 145
 white noise, 142
principal plane, 224
probability of detection, 259
probability of false detection, 260
prototype, see lifecycle phases
p-type material, 172
 hole concentration, 174
pulse detection, 272–275
 calculation in Matlab®, 436
 calculation in Python™, 436
false alarm rate, 272–275
pupil, 226–230
diameter, 229, 230
pyradi toolkit, 411
pyroelectric detector, 157–159
noise, 159
responsivity, 159
structure, 158
Python™, 409

Q
quanta, 20
quantum efficiency, 139, 181, 182
external, 181
anti-reflection coatings, 182
reflection, 181
internal, 181
photoconductive detector, 187
quantum well detector (QWIP), see
photon detector

R
1/R^2 losses, 311–314
radiance, 24
atmospheric path, 283
basic, 37
conservation, 35–37
Lambertian source, 41
luminous (luminance), 25
photon, 25
radiant, 25
reflected
ambient, 283
sky, 283
solar, 283
self-emitted, 281
signature model, 279–283
spatial invariance, 36
transfer, 35–41
transmitted background, 283
radiative transfer equation (RTE), 97,
101
radiator
gaseous, 70, 103
grey body, 71
Planck, 59, 65
selective, 71
surface, 104
thermal, 285–292
volume, 104
radiometer measurements
atmospheric correction, 267
spectral radiance, 287
radiometric quantities, 375
radiometry, 22
definition, xxv
nomenclature, 23
quantities, 24
techniques, 255–276
range equation, 267
solved in Python™, 435
ray
chief, 224
marginal, 224
tracing, 225
Rayleigh scattering, 115
reductionism, xxiii
reflectance
bidirectional, 76, 80–83
cavity, 74
diffuse, 76, 81, 82
directional, 75–83
in nature, 85
Fresnel, 77–79
geometry, 77
high, 73
Lambertian, 76, 81
material property, 27
mirror, 81
Snell’s law, 77, 79, 405
specular, 76, 82
refractive index, see index of refraction
relative humidity (RH), 123
relative luminous efficiency, 46
photopic, 46
scotopic, 46
rendering, 387–398
aliasing, 391, 396–398
rasterization, 391
priority fill algorithm, 391
side-effects, 393
z-buffering, 391
super-sampling, 392, 396–398
requirement allocation, 8
response
eye, 46
filter, 223, 240
frequency, 150
 complex valued optical, 236
 photoconductive detector, 190–191
 photovoltaic detector, 202–203
impulse, 235, 260
normalizing, 140
spatial frequency, 260
spectral weighting, 106, 244, 263–264
system, 246
thermal detector, 136
unlimited, 161
responsivity
 bolometer, 156
 normalized, 140, 243
 peak, 140, 243
 photoconductive detector, 189
 photon detector, 139
 pyroelectric detector, 159
 spectral, 140, 243
 thermal detector, 136, 152–154
 thermoelectric detector, 161
reverse-bias operation, 198
reverse-bias-saturation current, 197, 319
review, see design
root-mean-square (rms), 257
S
scanning efficiency, 330
scattering
 atmosphere, 112
 aerosols, 112
 attenuation coefficient, 99, 110
 Mie, 116, 134
 Rayleigh, 115, 134
scattering modes, 114
Schrödinger equation, 169
scotopic
 efficacy, 47
 efficiency, 47
 luminance, 47
 relative spectral efficiency, 378
 vision, 46
Seebeck coefficient, 160
selective radiator, see gaseous radiator
semiconductors
 current flow, 179
 carrier diffusion, 179
 carrier drift, 180
 charge mobility, 180
 diffusion constant, 180
 diffusion current, 180
 diffusion current density, 180
 drift current, 180
 drift current density, 180
 energy bands, 171
 structure, 169–170
 extrinsic materials, 171
 concentrations, 173
 examples, 174
 Fermi energy level, 173
 Fermi–Dirac distributions, 173
 intrinsic materials, 171
 concentrations, 173
 examples, 173
 Fermi energy level, 173
 intrinsic carrier concentration, 174
 light absorption, 176–178
 material parameters, 379–380
 Schrödinger equation, 169
 silicon lattice, 172
 wave equation, 176
sensor, 14
 aperture stop, 222
 field stop, 223
 noise model, 330–334
 optical
 elements, 222
 model, 240
 throughput, 248–250
 optimization worked example Matlab®, 459
 radiometric model, 242–245, 337–344
 complex source, 245
 detector signal, 242
 source area variations, 244
 signal calculations, 242–245
 complex source, 245
 detector, 242
source area variations, 244
solid angle
 field of view, 230
 flux-collecting, 230
spatial angles, 230
spectral
 filter, 223
 response, 223, 243
 stops/baffle, 223
terminology, 221–223
window, 222
worked example, 450
sharing, xxiii
short-circuit operation, 198, 202
short-wave infrared (SWIR), 65
shot noise, 143–144
interface electronics, 146
photovoltaic detectors, 203, 204
power spectral density, 143
signal, 256
 reference planes, 245
 electronics plane, 246
 image plane, 246
 object plane, 246
 optics plane, 246
 voltage, 243
signal-to-clutter ratio (SCR), 257
signal-to-noise ratio (SNR), 257
signature
 model, 279–283
 atmospheric path radiance, 283
 BRDF, 284
 equation, 281
 main contributors, 280
 reflected ambient radiance, 283
 reflected sky radiance, 283
 reflected solar radiance, 283
 self-emitted radiance, 281
 spatial properties, 279
 terminology, 282
 thermal radiator, 285–292
 transmitted background radiance, 283
 reflected vs emitted contribution, 283
rendering, 387
thermal radiation from common objects, 65
silicon detector, 139
simulation, 385–401
 knowledge management, 386
 validation, 386
sky radiance, 283, 398–401
Snell’s law, 79, 176, 403–405
solar cell analysis, 315–321
 configuration, 318
 experimental measurement, 315
 model, 319–321
 radiometry, 317
 solid angles, 316
 source areas, 316
solid angle, 28–35
 approximation, 33
 worked example Matlab®, 441
 Cassegrain telescope example, 448
field of view, 230
 flux collecting, 230
geometric, 28
 cone, 29
 flat rectangular surface, 32
 projected, 29, 41
 cone, 31
 flat rectangular surface, 32
 sphere, 34
sensor, 230
source area, 366
source, 14
 gaseous, 103
 Lambertian, 41–42
 shape, see Lambertian source, shape
space domain, 256
spatial
 integral, 38, 407
 calculation in Matlab®, 437
 view factor, 43
specific detectivity, 148, 183, 184, 205, 258
 photon-noise-limited thermal detector, 161
specification hierarchy, 8
specifications, 8–10
spectral
 band (NIR, MWIR, SWIR, LWIR), 65
 calculations, 264–267
 convolution, 265–267
detector function, 415–417
 in Matlab®, 415
 in Python™, 416
domains, 25
emissivity, 71
 measurement, 288
filter, 223, 240
filter function, 413–415
 in Matlab®, 413
 in Python™, 414
filtering, 39
integral, 407
integration, summation, 26
mismatch, 264
quantities, 25
 conversion, 26
 density, 25
response
eye, 46
filter, 240
 photon and thermal detectors, 138
sensor, 223, 246
responsivity, 243
weighting, 106, 244, 263–264
spectroradiometer, 287
specular reflectance, 76, 82
Stefan–Boltzmann law, 63
stopband, 240
subsystem, 2
sun, 86
 area, 316
 geometry factor, 87
 glint, 302
 reflected radiance, 283, 398–401
surface radiator, 104
surface roughness, 75
scale, 76
system, 2
 acceptance, see lifecycle phases
 context, 1
 engineering, 2
 noise, 245–247
 performance measures, 255–261
 segment, see subsystem
 source–medium–sensor model, 242–245
V-chart, 8

T
target
 extended, 268
 point, 268
technical performance measure (TPM), 10
telecope
 Cassegrain, 236
 Gregorian, 236
temperature
 apparent, 73
 cross-over, 300
 estimation of a flame, 290–292
 minimum detectable, 259
 minimum resolvable, 259
 noncontact measurement, 73
 radiation, 73
temperature-fluctuation noise, 145–146
 flux, 146
 power spectral density, 145
thermal detector, 136–138, 151–163
 bolometer, 155–157
 conceptual model, 152
 noise, see noise
 overview, 151–152
 photon-noise-limited, 161–163
 noise equivalent temperature difference (NETD), 163
 specific detectivity, 161–163
 pyroelectric, 157–159
 responsivity, 136, 152–154
 temperature-fluctuation-noise-limited, 163
 noise equivalent temperature difference (NETD), 163
 specific detectivity, 163
 thermoelectric, 159–161
thermal imager
 sensitivity, 334–337
 sensor model, 330–334
 assumptions, 330
 electronic parameters, 330
 example calculation, 333
 flux on the detector, 337–339
 focused optics, 339–342
 noise, 331–333
 out-of-focus optics, 342–344
thermal radiator, see grey body, see
Planck radiator
white point, 49, 92
thermal radiator model, 285–292
area estimation, 288
emissivity estimation, 287
process, 287
temperature estimation, 290
thermally transparent paint, 301
thermocouple
equation, 161
gas measurement, 354
thermodynamic equilibrium, 57
thermoelectric coolers, 186–187
thermoelectric detector, 159–161
layout, 160
noise, 161
responsivity, 161
thick lens, 225–227
thin-lens approximation, 221, 224–227
throughput, 248–250
time domain, 256
time-bandwidth product, 150
transfer function
modulation (MTF), 236, 260
optical (OTF), 236, 260
transmittance
atmospheric windows, 116
LWIR band, 117
MWIR band, 117
NIR band, 117
visual band, 117
background, 283
Bouguer’s law, 98
contrast, 103
effective, 105
filter, 240
homogeneous medium, 98
inhomogeneous medium, 99
material property, 27
medium, 38, 98
range, 108
two-flux Kubelka–Munk, 100

U
up/down atmospheric radiance, 121
Urbach tail, 177

V
valence band, 168
validation, 275, 386
value system, 11
Varshni approximation, 139
V-chart, see system
vignetting, 222, 227
collimator beam, 238, 239
control of, 228
in practical design, 341–342
visibility, see meteorological range
vision
mesopic, 46
photopic, 46
scotopic, 46
visual spectral band
atmospheric window, 116
contrast transmittance, 125
path radiance, 118
volume radiator, 104

W
wave model
electronic, 166
Bloch functions, 170
field strength, 176
velocity, 176
wave equation, 176
light, 20
wave packet, 22
wavefront, 20
wavelength, 20
cutoff, 138
relation to frequency, 20
relation to wavenumber, 26
spectral density conversion, 26
wavenumber, 25
website, xxv, 411
white noise, 142
white point, 49, 92
Wien’s displacement law, 62–63, 67

Z
zero field angle, see optical axis
Cornelius J. (Nelis) Willers completed a B.Eng (Honns) Electronics Engineering degree at the University of Pretoria in 1976 and an MS (Optical Engineering) degree at the University of Arizona in 1983. He is registered as a professional engineer. His 36 years of work experience includes electro-optical system development, system architecture and systems engineering, software development, and infrared scene simulation. His most notable achievements include being the chief architect and technical lead in establishing an imaging missile seeker technology base, and in the process, spearheading advanced physics-based infrared image simulation. The simulation system is currently used for a number of different applications in laboratories across the globe. His current interests include infrared signature measurement and data analysis, infrared system modeling and simulation, and the development of aircraft self-protection systems. He is leading the open-source, Python-based pyradi radiometry toolkit project. He has published a large number of technical and research reports. His conference paper topics include infrared system modeling and simulation, and the modeling of military conflict using agent-based techniques. He teaches radiometry and infrared system design in short courses and at a masters-degree level at the University of Pretoria.