Index

Symbols

α, see absorptance
α, see absorption attenuation coefficient
β, see optical thickness
γ, see attenuation coefficient
Δf, see noise equivalent bandwidth
e, see emissivity
η, see quantum efficiency
η_a, η_b, see image fill efficiency
η_s, see scanning efficiency
λ, see wavelength
λ_c, see cutoff wavelength
v, see frequency, optical
\tilde{v}, see wavenumber
p, see reflectance
σ, see scattering attenuation coefficient
σ_r, see surface roughness
σ_α, see Stefan–Boltzmann constant
σ_γ, see Stefan–Boltzmann constant
τ, see transmittance
Φ, see flux
ψ, see sun geometry factor
ω, see solid angle, geometric
Ω, see solid angle, projected
Ω_r, see field of regard
C_\circ, see contrast threshold
D, see pupil diameter
D^*, see specific detectivity
dA, see elemental area
E, see irradiance
E_λ, see bandgap
f, see electrical frequency
f, see focal length
F, see spatial view factor
f_n, see f-number
f_r, see bidirectional reflection distribution function
$f_{-3 \text{ dB}}$, see bandwidth, -3 dB

h, see Planck constant
$h\nu$, see photon energy
I, see intensity
I_{ph}, see photocurrent
I_{sat}, see reverse-bias-saturation current
K_λ, see photopic efficacy
k_f, see time-bandwidth product
k_n, see noise equivalent bandwidth
L, see radiance
M, see exitance
n, see index of refraction
P_d, see probability of detection
P_n, see probability of false detection
q, see absolute humidity
q, see quanta
R, see responsivity
R_V, see meteorological range
S, see sensor response
V_λ, see photopic vision
V_λ', see scotopic vision
Z_t, see detector preamplifier gain

A
aberrations, 232–235
astigmatism, 232
chromatic, 232
comatic/coma, 232
distortion, 235
field curvature, 235
spherical, 232
absolute humidity, 123
absorptance
attenuation coefficient, 99, 110
detector, 242
Kirchhoff's law, 69
material property, 27
absorption coefficient
direct transition materials, 177
extrinsic semiconductor, 178, 183
free-carrier, 177
indirect transition materials, 177
intrinsic semiconductor, 178, 183
refractive index, 176
spectral, 177
typical curves, 178
Urbach tail, 177
advanced model, see lifecycle phases
aerosols, 112–116
atmospheric transmittance, 113
land, 112
manmade, 112
maritime, 112
meteorological range, 127
Mie scattering, 116
Rayleigh scattering, 115
scattering attenuation coefficient, 128
afocal optics, 236, 237
aliasing, 146, 391, 396–398
angle
factor, see spatial view factor
linear, 27
solid, 28–35
aperture stop, 222, 232
approximation
bandgap, 139
BRDF, 81
grey body, 285
layered atmosphere, 104
Planck law, 64
responsivity, 415
scattering, 114
scotopic efficiency spectral shape, 46
Seebeck coefficient, 160
solid angle, 33, 437, 441
thin lens, 221, 225–227
time bandwidth, 150
transmittance, 108
area
clear aperture, 242
dimensional analysis, 367
elemental, 19
estimation of a flame, 288–290, 352
example calculations, 316, 441–447
pixel footprint, 269
projected, 28–35
solid angle, 28–35, 366
spatial integral, 407–409
sun, 316
areance, see irradiance and exitance
aspheric lens, 237
assumption management, 11
atmosphere, 108–128
absolute humidity, 123
aerosols, 112
attenuation, 108, 110
composition, 108
counter transmittance, 124–127
definitions, 109
effect on image, 268–272
effective transmittance, 107
looking up/down, 121
meteorological range, 127
Mie scattering, 116
molecular
absorption, 111–112
constituents, 111
transmittance, 113
overview, 110
path radiance, 118–121, 283
LWIR band, 120
MWIR band, 119
NIR band, 118
visual band, 118
radiative transfer codes, 129
Rayleigh scattering, 115
relative humidity, 123
scattering, 112, 127
scattering modes, 114
sky radiance, 283, 398–401
standard profiles, 109
transmittance, 113, 382
water vapor content, 121
windows, 116
LWIR band, 117
MWIR band, 117
NIR band, 117
visual band, 116
attenuation
atmosphere, 108
coefficient, 98–99
avalanche detector, 198
| B | background, 256
| | background-limited operation, 147, 183, 192, 205, 211
| | baffle, 223
| | band-limited noise, 142
| | bandwidth
| | −3 dB, 262
| | Butterworth filter, 263
| | noise equivalent, 262
| | best practices, 365–373
| | bidirectional reflection distribution function (BRDF), 80–83
| | Cook–Torrance model, 82
| | diffuse reflection, 81
| | measurements, 83
| | mirror reflection, 81
| | modeling approach, 82
| | Phong model, 82
| | reflection signatures, 284
| | specular reflective surface, 327
| | surface roughness, 76
| | blackbody
| | aperture, 75
| | curves, 68, 69, 72
| | definition, 59
| | emissivity, 65
| | Kirchhoff’s law, 70
| | laboratory instrument, 59
| | Lambertian source, 41
| | Planck’s law, 60–62
| | Stefan–Boltzmann law, 63
| | Wien’s displacement law, 62
| | Bloch functions, 170
| | bolometer, 155–157
| | construction, 155
| | noise, 157
| | responsivity, 156
| | Boltzmann probability distribution, 58
| | book website, xxv, 411
| | Bouguer’s law, 98
| | optical thickness, 103
| | transmittance approximation, 108
| | transmittance scaling, 108
| | Bravais lattice, 164
| | Bunsen burner flame case study
| | data analysis, 350–355
| | instrument calibration, 346–348
| | measurements, 348–350
| | workflow, 345–346
| | Butterworth filter, 262
| | C
| | carrier lifetime, 179
| | case study
| | Bunsen burner flame, 344–355
| | cloud model, 297–300
| | flame sensor, 309–311
| | flame-area estimation, 288
| | high-temperature flame measurement, 295
| | infrared scene simulation, 385–401
| | infrared sensor radiometry, 337–344
| | laser rangefinder range equation, 321–330
| | low-emissivity surface measurement, 295
| | object appearance in an image, 311–314
| | solar cell, 315–321
| | sun-glint, 302
| | temperature cross-over, 300
| | thermal camera sensitivity, 334–337
| | thermal imaging sensor model, 330–334
| | thermally transparent paints, 301
| | Cassegrain telescope, 236, 237
| | solid angle worked example, 448
| | cavity, 57, 74
| | emissivity, 74
| | reflectance, 74
| | chief ray, 224, 230
| | cloud model case study
| | measurement, 297
| | model, 298–300
| | relative signature contributions, 300
| | silver-lining factor, 298
| | worked example in Matlab®, 451
| | clutter, 256
| | CODATA constants, see constants
cold finger, 337
cold shield, 338
design, 342
efficiency, 341, 342
collimator, 238–239
color
 coordinates, 48–51
 worked example Python™, 430
 normalization, 48
 Planckian locus, 49
 ratio, 291, 398–401
 sensitivity to source spectrum, 49
 space, CIE 1931, 48
 xy chart, CIE, 381
coma, 234
complex lens, see thick lens
collection study, see lifecycle phases
conduction band, 168
conductors, 170
energy bands, 171
configuration factor, see spatial view
 factor
conservation of radiance, 35–37
constants
 CODATA, 65
 mathematical, 376
 physical, 376
 Planck law, 66, 377
contrast
 difference, 271
 inversion, 300
 radiometric, 272
 reduction, 102
 signature, 398–401
 threshold
 Koschmieder, 127
 World Meteorological Organization, 127
 transmittance, 103
 atmosphere, 124–127
conversion
 radiometric to photometric, 47
 spectral quantities, 26
convolution, 265–267
Cook–Torrance BRDF model, 82
 \cos^3, 32, 449
 \cos^4, 33
cryogenic coolers, 185
 Joule–Thomson, 185–186
 Stirling, 186
crystalline materials, 163–179
 acceptor doping, 172
 basis, 164
 conductors, 170
 donor doping, 172
 energy bands, 165–170
 insulators, 170
 lattice, 164
 n-type material, 171
 p-type material, 172
 pentavalent, 171
 photon-electron interactions, 174–176
 physical parameters, 379–380
 semiconductors, 170
 band structure, 169–170
 intrinsic and extrinsic materials, 171–174
 light absorption, 176–178
 structure, 164
 tetravalent, 170, 171
cutoff wavelength, 138
D
data analysis, 292–295
 imaging-camera example, 350–355
 workflow example, 345–346
definition study, see lifecycle phases
design, 2, 3
 prerequisites, 3
 process, 12
 review, 6
 trade off, 1
detection
 probability, 259, 272
 probability of false, 260
 pulse, 272–275
 pulse example calculation, 436
 range, 267–268, 326
 range example calculation, 326–327
detectivity, 147–149, 258
 specific, 148, 183, 184, 205, 258
detector
 avalanche, 198
 conductivity, 188
configurations, 140
cooling, 183–187
gas/liquid cryogen, 185
radiative, 185
thermo-electric, 185
cutoff wavelength, 138
detection process, 136–140
detectivity, see detectivity
dewar, 185
effective responsivity, 148
filter, 338
history, 135–136
intrinsic material, 173
material parameters, 379–380
noise, 140–150, 183
normalized spectral responsivity, 140, 243
peak responsivity, 140, 243
performance modeling, 207–210
photoconductive, 179, 187–193
photon, 138–140
detection process, 179–183
quantum efficiency, 181–183
photovoltaic, 179, 193–207
preamplifier gain, 243
signal voltage, 243
spectral responsivity, 182, 243
technology impact, 210–212
thermal, 136–138, 151–163
wideband responsivity, 261
detector-limited operation, 205, 206
development
optronic sensor systems, 385–386
parallel activities, 7
phase, see lifecycle phases
product, 4
development model, see also lifecycle phases
dewar, 185
difference
contrast, 271–272
noise equivalent temperature (NETD), 247, 259, 332–333
operator, 19
diffuse
reflectance, 76, 81
example visual spectra, 50
Phong BRDF model, 82
signature components, 279–283
reflectance, Phong BRDF, 82
shape factor, see spatial view factor
dimensional analysis, 367–368
example, 454, 461, 462
discrete ordinates, 104
distortion, 234
domain
space, 256
time, 256
doped materials
acceptor doping, 172
concentrations, 174
donor doping, 172
Duntley equations, 101
E
effective, see also normalization
detector responsivity, 148
mass
electron, 379
hole, 379
transmittance, 105–108
example humid atmosphere, 124
example various sources, 107
scaling with range, 108
simulation application, 393
value normalization, 261–262
efficacy
photopic, 47
scotopic, 47
total luminous, 47
efficiency
cold shield, 341
image fill, 331
photopic, 47
quantum, 139
relative luminous, 46
human eye, 47, 378
scanning, 330
scotopic, 47
spectral shape approximation, 46
solar cell, 318
Einstein equation, 180
electrical frequency, 141
electro-optical system
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>analysis</td>
<td>309–364</td>
</tr>
<tr>
<td>example</td>
<td></td>
</tr>
<tr>
<td>pyradi toolkit</td>
<td>411</td>
</tr>
<tr>
<td>definition</td>
<td>14</td>
</tr>
<tr>
<td>examples</td>
<td>15</td>
</tr>
<tr>
<td>functions</td>
<td>221</td>
</tr>
<tr>
<td>high-level design</td>
<td>15</td>
</tr>
<tr>
<td>major components</td>
<td>14</td>
</tr>
<tr>
<td>modeling and simulation</td>
<td>16</td>
</tr>
<tr>
<td>multispectral</td>
<td>40</td>
</tr>
<tr>
<td>simulation application</td>
<td>385–401</td>
</tr>
<tr>
<td>electromagnetic</td>
<td></td>
</tr>
<tr>
<td>radiation</td>
<td>20–22</td>
</tr>
<tr>
<td>particle model</td>
<td>20</td>
</tr>
<tr>
<td>wave model</td>
<td>20</td>
</tr>
<tr>
<td>spectrum</td>
<td>21</td>
</tr>
<tr>
<td>electron-hole pair</td>
<td>179</td>
</tr>
<tr>
<td>elemental area</td>
<td>19</td>
</tr>
<tr>
<td>emissivity</td>
<td>65–74</td>
</tr>
<tr>
<td>absorptivity</td>
<td>69</td>
</tr>
<tr>
<td>atmosphere</td>
<td>120, 121</td>
</tr>
<tr>
<td>blackbody</td>
<td>59</td>
</tr>
<tr>
<td>cavity</td>
<td>74</td>
</tr>
<tr>
<td>definitions</td>
<td>70</td>
</tr>
<tr>
<td>directional</td>
<td>83–86</td>
</tr>
<tr>
<td>example curves</td>
<td>85</td>
</tr>
<tr>
<td>in nature</td>
<td>85</td>
</tr>
<tr>
<td>gas radiator source</td>
<td>103, 310</td>
</tr>
<tr>
<td>grey body</td>
<td>71</td>
</tr>
<tr>
<td>Kirchhoff’s law</td>
<td>69</td>
</tr>
<tr>
<td>low</td>
<td>73</td>
</tr>
<tr>
<td>measurement</td>
<td>295–296</td>
</tr>
<tr>
<td>path radiance</td>
<td>101–103</td>
</tr>
<tr>
<td>practical estimation</td>
<td>287–288, 344–355</td>
</tr>
<tr>
<td>spectral</td>
<td>71</td>
</tr>
<tr>
<td>hemispherical</td>
<td>84</td>
</tr>
<tr>
<td>temporal variation</td>
<td>390</td>
</tr>
<tr>
<td>thermally transparent paint</td>
<td>301, 302</td>
</tr>
<tr>
<td>energy bands</td>
<td>165–170</td>
</tr>
<tr>
<td>bandgap</td>
<td>165</td>
</tr>
<tr>
<td>thermal carrier excitation</td>
<td>183</td>
</tr>
<tr>
<td>conduction band</td>
<td>168</td>
</tr>
<tr>
<td>Fermi level</td>
<td>166, 168</td>
</tr>
<tr>
<td>Fermi–Dirac distribution</td>
<td>166</td>
</tr>
<tr>
<td>interband transitions</td>
<td>174–176</td>
</tr>
<tr>
<td>intraband transitions</td>
<td>174, 175</td>
</tr>
<tr>
<td>orbitals</td>
<td>165</td>
</tr>
<tr>
<td>photon-electron interactions</td>
<td>174–176</td>
</tr>
<tr>
<td>semiconductor</td>
<td>169–170</td>
</tr>
<tr>
<td>valence band</td>
<td>168</td>
</tr>
<tr>
<td>wave model</td>
<td>166–169</td>
</tr>
<tr>
<td>Fermi–Dirac distribution</td>
<td>166</td>
</tr>
<tr>
<td>interband transitions</td>
<td>174–176</td>
</tr>
<tr>
<td>intraband transitions</td>
<td>174, 175</td>
</tr>
<tr>
<td>equivalent path length</td>
<td>99</td>
</tr>
<tr>
<td>étendue</td>
<td></td>
</tr>
<tr>
<td>exitance</td>
<td>24</td>
</tr>
<tr>
<td>Lambertian source</td>
<td>41–42</td>
</tr>
<tr>
<td>luminous</td>
<td>23</td>
</tr>
<tr>
<td>noise equivalent (NEM)</td>
<td>247, 259</td>
</tr>
<tr>
<td>photon</td>
<td>23, 60</td>
</tr>
<tr>
<td>Planck’s law</td>
<td>59–62</td>
</tr>
<tr>
<td>temperature derivative</td>
<td>60–62</td>
</tr>
<tr>
<td>radiant</td>
<td>23, 38</td>
</tr>
<tr>
<td>relation to radiance</td>
<td>41</td>
</tr>
<tr>
<td>source shape</td>
<td>44–45</td>
</tr>
<tr>
<td>Stefan–Boltzmann law</td>
<td>63</td>
</tr>
<tr>
<td>Wien’s displacement law</td>
<td>62</td>
</tr>
<tr>
<td>experimental model</td>
<td></td>
</tr>
<tr>
<td>lifecycle phases</td>
<td></td>
</tr>
<tr>
<td>extended target</td>
<td>232, 311–314</td>
</tr>
<tr>
<td>extinction coefficient</td>
<td></td>
</tr>
<tr>
<td>coefficient</td>
<td></td>
</tr>
<tr>
<td>extrinsic</td>
<td></td>
</tr>
<tr>
<td>detector</td>
<td></td>
</tr>
<tr>
<td>detector material</td>
<td>173</td>
</tr>
<tr>
<td>eye spectral response</td>
<td>46</td>
</tr>
<tr>
<td>$1/f$ noise</td>
<td>142, 145</td>
</tr>
<tr>
<td>photoconductive detectors</td>
<td>191</td>
</tr>
<tr>
<td>power spectral density</td>
<td>145</td>
</tr>
<tr>
<td>false alarm rate (FAR)</td>
<td>260</td>
</tr>
<tr>
<td>pulse detection</td>
<td>272–275</td>
</tr>
<tr>
<td>calculation in Matlab®</td>
<td>436</td>
</tr>
<tr>
<td>calculation in Python™</td>
<td>436</td>
</tr>
<tr>
<td>example calculation</td>
<td>273–275</td>
</tr>
<tr>
<td>Fermi level</td>
<td>166, 168</td>
</tr>
<tr>
<td>Fermi–Dirac distribution</td>
<td>166, 167, 173</td>
</tr>
<tr>
<td>ferroelectric effect</td>
<td>157–158</td>
</tr>
<tr>
<td>field</td>
<td></td>
</tr>
<tr>
<td>angle</td>
<td>224, 240</td>
</tr>
<tr>
<td>curvature</td>
<td>234, 235</td>
</tr>
<tr>
<td>of regard</td>
<td>330</td>
</tr>
</tbody>
</table>
Index

of view (FOV), 227–232, 240
small angle, 241
stop, 223, 226–232
figures of merit, see performance measures
fill factor, 317
filter
 absorption, 240
 antisolar, 297
 Butterworth, 262
 interference, 240
 multi-spectral, 39–41
 optical, 240
 passband, 240
 spectral, 240
 function, 413–415
 spectral response, 223, 240
 stopband, 240
 transmittance, 240
flame
 area calculation in Matlab®, 434
 Bunsen burner, 344–355
 sensor, 309–311
 worked example Matlab®, 417
 worked example Python™, 421
 temperature measurement, 295
fluctuation noise, 146–147
 background flux, 147
 signal flux, 146
flux, 24
 collecting solid angle, 230, 231
 Lambertian source, 41
 luminous, 23
 photon, 23
 radiant, 23
 system throughput, 249
 transfer, 35–41, 70
 geometrical construction, 36
 lossless medium, 37–38
 lossy medium, 38
 multi-spectral, 39–41
 radiative transfer equation, 101
 worked example, 448–451
f-number (f/#), 229–230
 clear aperture area, 242
 optics diameter, 242
focal
 length, 224
 plane, 223, 224
folded optics, 236, 237
foreground, 256
frequency
 electrical, 141
 optical, 20
 relation to wavelength, 20
 response
 photoconductive detector, 190–191
 photovoltaic detector, 202–203
Fresnel reflectance, 77–79
gold surface, 85
temperature measurement, 295
full-width-half-maximum (FWHM) bandwidth, 150
G
gaseous radiator, 70–73, 103–104, see also flame
 simulation, 389
generation–recombination (g-r) noise,
 144–145
 photoconductive detectors, 191–192
 power spectral density, 145
 rms noise current, 144
golden rules, 365–373
Gregorian telescope, 236, 237
grey body, 71–73
I
I-V curve, 196
image, 221, 268
 collimated, see collimator
 contrast, 102–103, 271
 flux-collecting solid angle, 230
 focal plane, 223
 modulation transfer function, see modulation transfer function (MTF)
 object appearance, 311–314
 object relationship, 225
 optical aberrations, see aberrations
 pixel irradiance, 268–271
 pixels, 268
 plane, 223, 227, 246
 field stop, 227
 pupil, 227
 vignetting, 227
point spread function, see point spread function (PSF)
probability of detection, 274
ray tracing, 225
rendering, 391–398
resolved object, 268–271
simulation, see infrared scene simulation
spatial sampling, see aliasing
unresolved object, 268–271
image fill efficiency, 331
index of refraction, 20
atmosphere, 97
cromatic aberration, 232
complex, 78, 176
Fresnel reflectance, 78
imaginary component, 176
metal, 78
numerical aperture (NA), 229
real component, 176
Snell’s law, 176
wave equation, 176
industrialization, see lifecycle phases
infinite conjugates, 224, 229
clear aperture, 242
collimator, see collimator
f-number, 229
optics diameter, 242
infrared scene simulation, 385–401
application, 387
benefits, 385
image rendering, see rendering OSSIM, 393
radiometric accuracy, 392
rendering equation, 393–396
effective transmittance, 394
signature model, 393
spectral calculation, 394
spectral discretization, 393
wideband calculation, 395
scene model
atmospheric attenuation, 390
geometry, 388
optical signature, 388
temperature, 390
texture, 390
inhomogeneous medium, 104
insulators, 170
intensity, 24
Lambertian source, 42
luminous, 23, 46
photon, 23
radiant, 23, 38
interface electronics noise, 146
intrinsic carrier concentration, 174
intrinsic detector, see photon detector
irradiance, 24
apparent, 244, 265
in an image, 268–271, see also object appearance in an image
luminous, 23
noise equivalent (NEE), 246, 258,
see also laser rangefinder example
photon, 23
pixel, 268
radiant, 23, 37
isolators
energy bands, 171
J
Johnson noise, 142–143
frequency spectrum, 143
interface electronics, 146
photoconductive detectors, 191–193
photovoltaic detectors, 204
power spectral density (PSD), 143
K
Kirchhoff’s law, 69
knowledge management, 386
Koschmieder, 127
Kubelka–Munk theory, 100
L
laboratory
blackbody, 59, 75
collimator, 238–239
Lagrange invariant, 249
Lambertian source, 41–42
flux, exitance, radiant, 41
blackbody, 41
definition, 41
intensity, 42
projected solid angle, 42
Index

reflectance, 76, 81
reflected sun radiance, 87
shape, 44–45
signature model, 279–283
spatial view factor, 43
view angle, 42
laser rangefinder
detection range, 326
example calculation
range equation, 326–327
signal-to-noise ratio (SNR), 274
threshold-to-noise ratio (TNR), 274
Lambertian reflective surface, 323–325
noise equivalent irradiance (NEE), 321
range equation case study, 321–330
signal irradiance, 322
specular reflective surface, 327–330
target optical cross section, 324
lifecycle phases, 4–7
light models, 22
light traps, 76
linear angle, 27, 28
long-wave infrared (LWIR), 65
atmospheric aerosol scattering, 127–128
atmospheric window, 117
contrast transmittance, 125
path radiance, 120
luminance, 25, 46–48
photopic, 47
scotopic, 47
M
marginal ray, 224, 229, 230
material properties, 27
Matlab®, 409
measurement
bidirectional reflection distribution function (BRDF), 76, 83
cloud, 297
data analysis, 292–295
flame example, 348–350
instrument calibration, 346–348
linear angle, 27
spectroradiometer, 287
technical performance, 255
temperature, 73, 290–292, 295, 354
medium, 14
absorption attenuation coefficient, 99
atmosphere, 108–128
attenuation coefficient, 99
conducting, 78
discrete ordinates, 104
equivalent path length, 99
homogeneous, 98
index of refraction, 20
inhomogeneous, 99, 104–105
lossless, 37–38
lossy, 38
optical, 98–104
optical thickness, 103
path radiance, 99–103
scattering attenuation coefficient, 99
transmittance, 38, 98, 108
medium-wave infrared (MWIR), 65
atmospheric aerosol scattering, 127–128
atmospheric window, 117
contrast transmittance, 125
path radiance, 119
mesopic vision, 46
meteorological range, 127
microbolometer, 156–157
Mie scattering, 116
minimum detectable temperature (MDT), 259
minimum resolvable temperature (MRT), 259
model, 12
atmospheric, 129
BRDF, see bidirectional reflection distribution function (BRDF)
cloud, 297–300
detector, 207–210
example, 208
discrete ordinates, 104
electromagnetic wave, 20
imaging sensor, 240–245, 337–344
light, 22
photon particle, 22
photovoltaic detectors circuit, 200
signature, 279–283
solar cell, 319–321
solar irradiance, 86
source–medium–sensor, 14
validation, 275
modeling and simulation (M&S), 7, 16, 385–401
Modtran™
description, 129
meteorological range, 127
visibility, 127
modulation transfer function (MTF), 236, 260
multi-spectral, 39–41
N
ear-infrared (NIR), 65
atmospheric window, 117
path radiance, 118
Phong BRDF parameters, 285
noise, 245–247, 256
bolometer, 157
considerations in imaging systems, 146
equivalent
bandwidth, 149–150, 262
exitance (NEM), 247, 259
irradiance (NEE), 246, 258
power (NEP), 147–149, 246, 258
radiance (NEL), 247, 258
reflectance (NER), 259
target contrast (NETC), 335–337
temperature difference (NETD), 247, 259, 332–333
1/f, 145
fluctuation, 146–147
generation–recombination (g-r), 144–145
interface electronics, 146
Johnson, 142–143
Nyuquist, see Johnson noise
photoconductive detectors, 191–193
photovoltaic detectors, 203–207
physical processes, 140
power spectral density, 141–142
pyroelectric detector, 159
shot, 143–144
system, 141
temperature-fluctuation, 145–146
thermal, see Johnson noise
thermoelectric detector, 161
time-bandwidth product, 150
normalization, 261–263
color coordinates, 48
effective value, 261–262
peak, 262
spatial, 29, 261
weighted mapping, 263
normalized spectral responsivity, 243
n-type material, 171
electron concentration, 174
numerical aperture (NA), 229, 230
O
object
appearance in an image, 311–314
worked example Python™, 424
resolved, 268
unresolved, 268
open-circuit operation, 198, 200
optics, 223–236
aberrations, 232–235
aperture, 226
aspheric lens, 237
axis, 224
chief ray, 224, 230
collimator, 238
conjugates, 224
elements, 222–224
field
angle, 224
stop, 226, 230
flux collecting, 230
f-number, 229, 230
focal
length, 224
plane, 223, 224
frequency, 20
infinite conjugates, 224, 229
marginal ray, 224, 229, 230
medium, 97–104
modulation transfer function (MTF), 236
numerical aperture (NA), 229, 230
point spread function (PSF), 235
power, 223
principal plane, 224
pupil, 226–230
ray tracing, 225
signature, 279–292
model, 279–283
rendering, 387
spectral filter, 240
stray light, 227
system, 236
afocal, 236
Cassegrain, 236
Gregorian, 236
refractive, 236
thick lens, 225
thickness, 103
thin-lens approximation, 224, 225
transfer function (OTF), 236, 260
vignetting, 227, 238
Optronics System Simulation (OSSIM), 393
orbitals, 165

P
paraxial approximation, see thin-lens approximation
particle model, 20
passband, 240
path radiance, 99–103, 118–121
Duntley equations, 100
emissivity, 101–103
Kubelka–Munk theory, 100
LWIR band, 120
MWIR band, 119
NIR band, 118
visual band, 118
Pauli’s exclusion principle, 165, 166, 176
peak responsivity, 243
Peltier effect, 151, 186
performance measures, 10, 255–261
definition, 256
detectivity, 258
false alarm rate (FAR), 260
minimum
detectable temperature (MDT), 259
resolvable temperature (MRT), 259
modulation transfer function (MTF), 260
noise equivalent
exitance (NEM), 259
irradiance (NEE), 258
power (NEP), 258
radiance (NEL), 258
reflectance (NER), 259
temperature difference (NETD), 259
optical transfer function (OTF), 260
point spread function (PSF), 260
probability of detection, 259
probability of false detection, 260
role, 255
signal-to-clutter ratio (SCR), 257
signal-to-noise ratio (SNR), 257
specific detectivity, 258
Phong BRDF model, 82
phonon, 175–177
photoconductive detector, 179, 187
bias circuitry, 189–190
conductivity, 188
frequency response, 190–191
geometry, 189
noise, 191–193
generation–recombination (g–r), 192
Johnson, 192–193
photoconductive gain, 190
quantum efficiency, 187
responsivity, 189
signal, 187–189
photocurrent, 179, 197, 200, 202, 204, 209
photodiode, see photovoltaic detector
photoemissive detector, see photon detector
photometry, 23, 45–51
units, 45
photon, 22
absorption, 176–178
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorption coefficient</td>
<td>177–178</td>
</tr>
<tr>
<td>detector</td>
<td>138–140</td>
</tr>
<tr>
<td>noise, see noise</td>
<td></td>
</tr>
<tr>
<td>operation</td>
<td>179</td>
</tr>
<tr>
<td>quantum efficiency</td>
<td>139</td>
</tr>
<tr>
<td>responsivity</td>
<td>139</td>
</tr>
<tr>
<td>electron interactions</td>
<td>174</td>
</tr>
<tr>
<td>energy</td>
<td>22</td>
</tr>
<tr>
<td>wave packet</td>
<td>22</td>
</tr>
<tr>
<td>photopic</td>
<td></td>
</tr>
<tr>
<td>efficacy</td>
<td>47</td>
</tr>
<tr>
<td>efficiency</td>
<td>47</td>
</tr>
<tr>
<td>luminance</td>
<td>47</td>
</tr>
<tr>
<td>relative spectral efficiency</td>
<td>378</td>
</tr>
<tr>
<td>vision</td>
<td>46</td>
</tr>
<tr>
<td>photovoltaic detector</td>
<td>179, 193</td>
</tr>
<tr>
<td>background flux</td>
<td>204</td>
</tr>
<tr>
<td>background-limited operation</td>
<td>205</td>
</tr>
<tr>
<td>bias configurations</td>
<td>197–202</td>
</tr>
<tr>
<td>circuit model</td>
<td>200</td>
</tr>
<tr>
<td>open-circuit</td>
<td>200–202</td>
</tr>
<tr>
<td>reverse</td>
<td>198–200</td>
</tr>
<tr>
<td>short-circuit</td>
<td>202</td>
</tr>
<tr>
<td>construction</td>
<td>194</td>
</tr>
<tr>
<td>depletion region</td>
<td>194</td>
</tr>
<tr>
<td>detector-limited operation</td>
<td></td>
</tr>
<tr>
<td>open-circuit mode</td>
<td>206–207</td>
</tr>
<tr>
<td>short-circuit mode</td>
<td>205–206</td>
</tr>
<tr>
<td>diffusion current</td>
<td>197, 204</td>
</tr>
<tr>
<td>energy diagrams</td>
<td>195</td>
</tr>
<tr>
<td>frequency response</td>
<td>202–203</td>
</tr>
<tr>
<td>I-V curve</td>
<td>196–197</td>
</tr>
<tr>
<td>noise</td>
<td>203–207</td>
</tr>
<tr>
<td>Johnson</td>
<td>204</td>
</tr>
<tr>
<td>shot</td>
<td>204</td>
</tr>
<tr>
<td>noise equivalent power (NEP)</td>
<td>204</td>
</tr>
<tr>
<td>optimal power transfer</td>
<td>202</td>
</tr>
<tr>
<td>photocurrent</td>
<td>204</td>
</tr>
<tr>
<td>p-n junction</td>
<td>194</td>
</tr>
<tr>
<td>quantum efficiency</td>
<td>196</td>
</tr>
<tr>
<td>resistance</td>
<td>204</td>
</tr>
<tr>
<td>responsivity</td>
<td>196</td>
</tr>
<tr>
<td>reverse-bias-saturation current</td>
<td>197</td>
</tr>
<tr>
<td>specific detectivity</td>
<td>205</td>
</tr>
<tr>
<td>thermally generated current</td>
<td>204</td>
</tr>
<tr>
<td>vs photoconductive detector</td>
<td>194</td>
</tr>
<tr>
<td>photovoltaic detectors</td>
<td></td>
</tr>
<tr>
<td>energy bands</td>
<td>198</td>
</tr>
<tr>
<td>physical and mathematical constants</td>
<td>376</td>
</tr>
<tr>
<td>pixel</td>
<td>268</td>
</tr>
<tr>
<td>irradiance in an image</td>
<td>268–271</td>
</tr>
<tr>
<td>signal magnitude</td>
<td>268</td>
</tr>
<tr>
<td>Planck</td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>22</td>
</tr>
<tr>
<td>exitance function Matlab®</td>
<td>412</td>
</tr>
<tr>
<td>exitance function Python™</td>
<td>412</td>
</tr>
<tr>
<td>law</td>
<td>57–65</td>
</tr>
<tr>
<td>constants</td>
<td>377</td>
</tr>
<tr>
<td>derivative exitance</td>
<td>60–62</td>
</tr>
<tr>
<td>exitance</td>
<td>60–62</td>
</tr>
<tr>
<td>integrated</td>
<td>63</td>
</tr>
<tr>
<td>maximum</td>
<td>62</td>
</tr>
<tr>
<td>summary</td>
<td>65</td>
</tr>
<tr>
<td>summation approximation</td>
<td>64</td>
</tr>
<tr>
<td>radiator</td>
<td>59, 65</td>
</tr>
<tr>
<td>Planckian locus</td>
<td>49</td>
</tr>
<tr>
<td>plume</td>
<td>103</td>
</tr>
<tr>
<td>effective transmittance</td>
<td>106</td>
</tr>
<tr>
<td>surface radiator</td>
<td>104</td>
</tr>
<tr>
<td>volume radiator</td>
<td>104</td>
</tr>
<tr>
<td>p-n diode, see photovoltaic detector</td>
<td></td>
</tr>
<tr>
<td>p-n junction</td>
<td>194</td>
</tr>
<tr>
<td>point spread function (PSF)</td>
<td>235, 260</td>
</tr>
<tr>
<td>point target</td>
<td>232</td>
</tr>
<tr>
<td>Poisson statistics</td>
<td>144</td>
</tr>
<tr>
<td>power spectral density (PSD)</td>
<td>141–142</td>
</tr>
<tr>
<td>1/f noise</td>
<td>142, 145</td>
</tr>
<tr>
<td>band-limited noise</td>
<td>142</td>
</tr>
<tr>
<td>combining spectra</td>
<td>149</td>
</tr>
<tr>
<td>generation–recombination (g-r) noise</td>
<td>145</td>
</tr>
<tr>
<td>Johnson noise</td>
<td>143</td>
</tr>
<tr>
<td>shot noise</td>
<td>143</td>
</tr>
<tr>
<td>temperature-fluctuation noise</td>
<td>145</td>
</tr>
<tr>
<td>white noise</td>
<td>142</td>
</tr>
<tr>
<td>principal plane</td>
<td>224</td>
</tr>
<tr>
<td>probability of detection</td>
<td>259</td>
</tr>
<tr>
<td>probability of false detection</td>
<td>260</td>
</tr>
<tr>
<td>prototype, see lifecycle phases</td>
<td></td>
</tr>
<tr>
<td>p-type material</td>
<td>172</td>
</tr>
<tr>
<td>hole concentration</td>
<td>174</td>
</tr>
<tr>
<td>pulse detection</td>
<td>272–275</td>
</tr>
<tr>
<td>calculation in Matlab®</td>
<td>436</td>
</tr>
<tr>
<td>calculation in Python™</td>
<td>436</td>
</tr>
</tbody>
</table>
false alarm rate, 272–275
pupil, 226–230
diameter, 229, 230
pyradi toolkit, 411
pyroelectric detector, 157–159
noise, 159
responsivity, 159
structure, 158
Python™, 409
Q
quanta, 20
quantum efficiency, 139, 181, 182
external, 181
anti-reflection coatings, 182
reflection, 181
internal, 181
photoconductive detector, 187
quantum well detector (QWIP), see
photon detector
R
$1/R^2$ losses, 311–314
radiance, 24
atmospheric path, 283
basic, 37
conservation, 35–37
Lambertian source, 41
luminous (luminance), 25
photon, 25
radiant, 25
reflected
ambient, 283
sky, 283
solar, 283
self-emitted, 281
signature model, 279–283
spatial invariance, 36
transfer, 35–41
transmitted background, 283
radiative transfer equation (RTE), 97,
101
radiator
gaseous, 70, 103
grey body, 71
Planck, 59, 65
selective, 71
surface, 104
thermal, 285–292
volume, 104
radiometer measurements
atmospheric correction, 267
spectral radiance, 287
radiometric quantities, 375
radiometry, 22
definition, xxv
nomenclature, 23
quantities, 24
techniques, 255–276
range equation, 267
solved in Python™, 435
ray
chief, 224
marginal, 224
tracing, 225
Rayleigh scattering, 115
reductionism, xxiii
reflectance
bidirectional, 76, 80–83
cavity, 74
diffuse, 76, 81, 82
directional, 75–83
in nature, 85
Fresnel, 77–79
glometry, 77
high, 73
Lambertian, 76, 81
material property, 27
mirror, 81
Snell’s law, 77, 79, 405
specular, 76, 82
refractive index, see index of refraction
relative humidity (RH), 123
relative luminous efficiency, 46
photopic, 46
scotopic, 46
rendering, 387–398
aliasing, 391, 396–398
rasterization, 391
priority fill algorithm, 391
side-effects, 393
z-buffering, 391
super-sampling, 392, 396–398
requirement allocation, 8
response
eye, 46
filter, 223, 240
frequency, 150
 complex valued optical, 236
 photoconductive detector, 190–191
 photovoltaic detector, 202–203
impulse, 235, 260
normalizing, 140
spatial frequency, 260
spectral weighting, 106, 244, 263–264
system, 246
thermal detector, 136
unlimited, 161
responsivity
 bolometer, 156
 normalized, 140, 243
 peak, 140, 243
 photoconductive detector, 189
 photon detector, 139
 pyroelectric detector, 159
 spectral, 140, 243
 thermal detector, 136, 152–154
 thermoelectric detector, 161
reverse-bias operation, 198
reverse-bias-saturation current, 197, 319
review, see design
root-mean-square (rms), 257
S
scanning efficiency, 330
scattering
 atmosphere, 112
 aerosols, 112
 attenuation coefficient, 99, 110
 Mie, 116, 134
 Rayleigh, 115, 134
scattering modes, 114
Schrödinger equation, 169
scotopic
 efficacy, 47
 efficiency, 47
 luminance, 47
 relative spectral efficiency, 378
 vision, 46
Seebeck coefficient, 160
selective radiator, see gaseous radiator
semiconductors
 current flow, 179
 carrier diffusion, 179
 carrier drift, 180
 charge mobility, 180
 diffusion constant, 180
 diffusion current, 180
 diffusion current density, 180
 drift current, 180
 drift current density, 180
 energy bands, 171
 structure, 169–170
 extrinsic materials, 171
 concentrations, 173
 examples, 174
 Fermi energy level, 173
 Fermi–Dirac distributions, 173
 intrinsic materials, 171
 concentrations, 173
 examples, 173
 Fermi energy level, 173
 intrinsic carrier concentration,
 174
 light absorption, 176–178
 material parameters, 379–380
 Schrödinger equation, 169
 silicon lattice, 172
 wave equation, 176
sensor, 14
 aperture stop, 222
 field stop, 223
 noise model, 330–334
 optical
 elements, 222
 model, 240
 throughput, 248–250
 optimization worked example Matlab®,
 459
 radiometric model, 242–245, 337–344
complex source, 245
 detector signal, 242
 source area variations, 244
 signal calculations, 242–245
complex source, 245
detector, 242
source area variations, 244
solid angle
 field of view, 230
 flux-collecting, 230
spatial angles, 230
spectral
 filter, 223
 response, 223, 243
stops/baffle, 223
terminology, 221–223
window, 222
worked example, 450
sharing, xxiii
short-circuit operation, 198, 202
short-wave infrared (SWIR), 65
shot noise, 143–144
 interface electronics, 146
photovoltaic detectors, 203, 204
power spectral density, 143
signal, 256
 reference planes, 245
 electronics plane, 246
 image plane, 246
 object plane, 246
 optics plane, 246
 voltage, 243
signal-to-clutter ratio (SCR), 257
signal-to-noise ratio (SNR), 257
signature
model, 279–283
 atmospheric path radiance, 283
 BRDF, 284
 equation, 281
 main contributors, 280
 reflected ambient radiance, 283
 reflected sky radiance, 283
 reflected solar radiance, 283
 self-emitted radiance, 281
 spatial properties, 279
 terminology, 282
 thermal radiator, 285–292
 transmitted background radiance, 283
 reflected vs emitted contribution, 283
rendering, 387
thermal radiation from common objects, 65
silicon detector, 139
simulation, 385–401
 knowledge management, 386
 validation, 386
sky radiance, 283, 398–401
Snell’s law, 79, 176, 403–405
solar cell analysis, 315–321
 configuration, 318
 experimental measurement, 315
 model, 319–321
 radiometry, 317
 solid angles, 316
 source areas, 316
solid angle, 28–35
 approximation, 33
 worked example Matlab®, 441
Cassegrain telescope example, 448
field of view, 230
flux collecting, 230
geometric, 28
 cone, 29
 flat rectangular surface, 32
 projected, 29, 41
 cone, 31
 flat rectangular surface, 32
 sphere, 34
sensor, 230
source area, 366
source, 14
 gaseous, 103
 Lambertian, 41–42
 shape, see Lambertian source, shape
space domain, 256
spatial
 integral, 38, 407
 calculation in Matlab®, 437
 view factor, 43
specific detectivity, 148, 183, 184, 205, 258
 photon-noise-limited thermal detector, 161
specification hierarchy, 8
specifications, 8–10
spectral
 band (NIR, MWIR, SWIR, LWIR), 65
 calculations, 264–267
 convolution, 265–267
detector function, 415–417
 in Matlab®, 415
 in Python™, 416
domains, 25
emissivity, 71
en measurement, 288
filter, 223, 240
filter function, 413–415
 in Matlab®, 413
 in Python™, 414
filtering, 39
integral, 407
integration, summation, 26
mismatch, 264
quantities, 25
 conversion, 26
 density, 25
response
eye, 46
filter, 240
photon and thermal detectors, 138
sensor, 223, 246
responsivity, 243
weighting, 106, 244, 263–264
spectroradiometer, 287
specular reflectance, 76, 82
Stefan–Boltzmann law, 63
stopband, 240
subsystem, 2
sun, 86
 area, 316
 geometry factor, 87
 glint, 302
 reflected radiance, 283, 398–401
surface radiator, 104
surface roughness, 75
scale, 76
system, 2
 acceptance, see lifecycle phases
 context, 1
 engineering, 2
 noise, 245–247
 performance measures, 255–261
 segment, see subsystem
 source–medium–sensor model, 242–245
V-chart, 8

T
target
 extended, 268
 point, 268
technical performance measure (TPM), 10

 telescope
 Cassegrain, 236
 Gregorian, 236
temperature
 apparent, 73
 cross-over, 300
 estimation of a flame, 290–292
 minimum detectable, 259
 minimum resolvable, 259
 noncontact measurement, 73
 radiation, 73
 temperature-fluctuation noise, 145–146
 flux, 146
 power spectral density, 145
thermal detector, 136–138, 151–163
 bolometer, 155–157
 conceptual model, 152
 noise, see noise
 overview, 151–152
 photon-noise-limited, 161–163
 noise equivalent temperature
difference (NETD), 163
 specific detectivity, 161–163
 pyroelectric, 157–159
 responsivity, 136, 152–154
 temperature-fluctuation-noise-limited, 163
 noise equivalent temperature
difference (NETD), 163
 specific detectivity, 163
 thermoelectric, 159–161
thermal imager
 sensitivity, 334–337
 sensor model, 330–334
 assumptions, 330
 electronic parameters, 330
 example calculation, 333
 flux on the detector, 337–339
 focused optics, 339–342
 noise, 331–333
 out-of-focus optics, 342–344
thermal radiator, see grey body, see
Planck radiator
white point, 49, 92
thermal radiator model, 285–292
area estimation, 288
emissivity estimation, 287
process, 287
temperature estimation, 290
thermally transparent paint, 301
thermocouple
equation, 161
gas measurement, 354
thermodynamic equilibrium, 57
thermoelectric coolers, 186–187
thermoelectric detector, 159–161
layout, 160
noise, 161
responsivity, 161
thick lens, 225–227
thin-lens approximation, 221, 224–227
throughput, 248–250
time domain, 256
time-bandwidth product, 150
transfer function
modulation (MTF), 236, 260
optical (OTF), 236, 260
transmittance
atmospheric windows, 116
LWIR band, 117
MWIR band, 117
NIR band, 117
visual band, 116
background, 283
Bouguer’s law, 98
contrast, 103
effective, 105
filter, 240
homogeneous medium, 98
inhomogeneous medium, 99
material property, 27
medium, 38, 98
range, 108
two-flux Kubelka–Munk, 100
validation, 275, 386
value system, 11
Varshni approximation, 139
V-chart, see system
vignetting, 222, 227
collimator beam, 238, 239
control of, 228
in practical design, 341–342
visibility, see meteorological range
vision
mesopic, 46
photopic, 46
scotopic, 46
visual spectral band
atmospheric window, 116
contrast transmittance, 125
path radiance, 118
volume radiator, 104
W
wave model
electronic, 166
Bloch functions, 170
field strength, 176
velocity, 176
wave equation, 176
light, 20
wave packet, 22
wavefront, 20
wavelength, 20
cutoff, 138
relation to frequency, 20
relation to wavenumber, 26
spectral density conversion, 26
wavenumber, 25
website, xxv, 411
white noise, 142
white point, 49, 92
Wien’s displacement law, 62–63, 67
Z
zero field angle, see optical axis
U
up/down atmospheric radiance, 121
Urbach tail, 177
V
valence band, 168
Cornelius J. (Nelis) Willers completed a B.Eng (Honns) Electronics Engineering degree at the University of Pretoria in 1976 and an MS (Optical Engineering) degree at the University of Arizona in 1983. He is registered as a professional engineer. His 36 years of work experience includes electro-optical system development, system architecture and systems engineering, software development, and infrared scene simulation. His most notable achievements include being the chief architect and technical lead in establishing an imaging missile seeker technology base, and in the process, spearheading advanced physics-based infrared image simulation. The simulation system is currently used for a number of different applications in laboratories across the globe. His current interests include infrared signature measurement and data analysis, infrared system modeling and simulation, and the development of aircraft self-protection systems. He is leading the open-source, Python-based pyradi radiometry toolkit project. He has published a large number of technical and research reports. His conference paper topics include infrared system modeling and simulation, and the modeling of military conflict using agent-based techniques. He teaches radiometry and infrared system design in short courses and at a masters-degree level at the University of Pretoria.