Index

2D windowed Fourier filtering (WFF2), 96, 248
algorithm, 97
default parameters, 104
fringe quality, 103
gain factor, 101
higher-order polynomial phase, 106
threshold, 102
window shape, 102
window size, 101
2D windowed Fourier ridges (WFR2), 56
algorithm, 58
curvature estimation, 59
default parameters, 62
fringe quality, 60
gain factor, 59
perturbation analysis, 58, 72
window shape, 61
window size, 60

amplitude normalization, 185
array, 125

B
background intensity, 5
background removal, 184
breakdown point, 51, 65, 94

C
Carré algorithm, 7
carrier fringe demodulation window size, 145
carrier fringe patterns, 14
circular phase, 16
coherence enhancing diffusion (CED), 171
compute unified device architecture (CUDA), 265
Cramer–Rao bounds, 33, 55
critical point, 194, 198, 208–209, 212, 214, 216, 223, 226
critical region, 209, 212, 214, 216, 218, 223

d
data parallelism, 264
data representation, 5
decoupled demodulation, 200
denoising, 185
difficulties in fringe analysis, 6
digital holographic interferometry, 3
digital image correlation (DIC), 19
Index

discontinuity, 66, 109, 121, 223
distance map, 174

E
electric speckle pattern interferometry (ESPI), 3
empirical mode decomposition (EMD), 184
error-compensating algorithms, 7
exponential phase fields, 14
extrapolation, 190, 208–209, 211, 214, 216–217, 219

F
fingerprint, 4
Fourier transform, 10
CUFFT, 271
frame, 83, 97
frequency-guided orientation unwrapping, 197, 225
fringe amplitude, 5
fringe direction, 159, 160
fringe direction estimation, 197, 225
fringe gradient, 160
fringe model, 239
fringe normal, 160
fringe orientation, 159, 160
fringe orientation estimation complex representation, 166
extended gradient-based method, 164
gradient-based method, 161
WFR-based method, 166
fringe pattern classification, 13
fringe pattern demodulation (FPDem), 153
fringe projection profilometry (FPP), 4, 145, 252
fringe properties, 5
fringe reflectometry, 149
fringe tangent, 160

G
Gabor meets Gabor, 123
Gaussian window, 18
general purpose computing on GPU (GPGPU), 265
geometrical moiré, 4
global feature, 123
graphic processing unit (GPU), 265, 270
grid, 4

H
Hilbert space, 83
Hilbert transform, 185
holographic interferometry, 3

I
ill-posed problem, 209, 212, 214, 216
ill-posedness, 190
initial status, 248
initial value, 208–217, 231
instantaneous frequency, 28
integrated demodulation, 207
interlaced indexed link list (I2L2), 125

L
least squares fitting, 8, 35, 46, 128
Levenberg–Marquardt (LM), 202, 208, 210–211, 213, 215, 231
linked list (LL), 125
list-trimming, 126
local curvature, 53
local frequency, 28, 53

M
MATLAB® parallel computing toolbox (PCT), 265, 268, 270
maximum likelihood, 34
mean, 30
moiré interferometry, 3
Index

multicore computer, 267–268
multicore processor, 265

N
n-D windowed Fourier ridges (WRFn), 70
algorithm, 71
gain factor, 71
neighborhood size, 248
noise, 5
noise model, 53
number of iterations (NI), 216

O
oriented filters, 171, 174

P
parallel computing, 264
parallel fringe pattern analysis, 264
parameter estimation, 33
peaks phase, 16
phase distribution, 5
phase gradient, 159
phase normal, 159
phase tangent, 160
phase unwrapping, 117
quality-guided, 124
two-section guiding, 126
phase-shifting technique, 6
spatial, 10
spatial carrier, 9
photoelasticity, 3
pipeline parallelism, 264
precision, 1

Q
quadrature transform, 188
quality guidance, 18

R
rectangular window, 18
regularized phase tracking, 207
window shape, 209, 212, 214, 216
window size, 209, 212, 214, 216
rereferencing, 248
root mean square error (RMSE), 45

S
shearography, 4
signal model, 53, 137
signal-to-noise ratio (SNR), 33
simplified ML (sML), 36
simultaneous background removal and amplitude normalization, 118
differentiation method, 189
phase-shifting method, 189
spatial scanning method, 188
statistical method, 189
temporal scanning method, 189
single closed fringe patterns, 14
sparsity and redundancy, 19
spatial coherence, 244
spatiotemporal coherence, 244
spatiotemporal least–squares approaches to some unknowns (LSxU), 243
denoising, 248
speckle correlation fringe pattern, 3
speckle interferometry, 252
speedup, 266
stack-chain, 126
standard deviation, 30
structure tensor, 166
suboptimal estimators, 36
synthetic-aperture radar, 4

T
task parallelism, 264
temporal coherence, 244
tracking maximum likelihood (tML), 36, 218
transform-based demodulation, 191
W
WFR2/WFF2-assisted quality-guided, 120, 117, 118
windowed Fourier filtering (WFF), 85
algorithm, 85
default parameters, 91
fringe quality, 91
gain factor, 89
higher-order polynomial phase, 94
threshold, 90
window shape, 89–90
window size, 89
windowed Fourier ridges (WFR), 38
breakdown point, 51
curvature estimation, 46
default parameters, 50
fringe quality, 48
gain factor, 48
perturbation analysis, 43, 71
window shape, 49
window size, 48
windowed Fourier transform (WFT), 38, 82, 96
wrapped phase maps, 14
Dr. Qian Kemao is an assistant professor at Nanyang Technological University. His research interests include experimental mechanics, optical metrology, image processing, computer animation, and medical imaging. He is an author/coauthor for more than 130 peer-reviewed technical papers, an Associate Editor of Optics and Lasers in Engineering, a senior member of SPIE, a member of the OSA, and a founding committee member of the Optics and Photonics Society of Singapore.