WINDOWED FRINGE PATTERN ANALYSIS
WINDOWED FRINGE PATTERN ANALYSIS

Qian Kemao

SPIE PRESS
Bellingham, Washington USA
To Xiaocong and Zihan
Table of Contents

Preface xiii
Glossary of Terms and Acronyms xv

1 Introduction 1
1.1 Formation of Fringe Patterns 2
1.2 Fringe Model 4
1.3 Phase-shifting Technique 6
 1.3.1 Basic principle 6
 1.3.2 Special and known phase shifts 7
 1.3.3 Regular and unknown phase shifts 7
 1.3.4 Arbitrary and known phase shifts 8
 1.3.5 Arbitrary and unknown phase shifts 9
 1.3.6 Extensions 9
1.4 Fourier Transform Technique 10
1.5 Phase Unwrapping 12
1.6 Fringe Pattern Classification 13
 1.6.1 Exponential phase fields 14
 1.6.2 Wrapped phase maps 14
 1.6.3 Carrier fringe patterns 14
 1.6.4 Single closed fringe patterns 14
1.7 Fringe Pattern Simulation 14
1.8 Windowed Fringe Pattern Analysis 16
1.9 Book Organization 20
References 20

2 Windowed Fourier Ridges for Exponential Phase Fields 27
2.1 Problem Statement in 1D EPF Analysis 28
 2.1.1 Signal model 28
 2.1.2 Noise model 29
 2.1.3 Noise problem 32
 2.1.4 Parameter estimation and Cramer–Rao bounds 33
 2.1.5 Maximum-likelihood estimators 34
 2.1.6 Suboptimal estimators 36
2.2 1D Windowed Fourier Ridges (WFR) Concept and Feasibility

- **2.2.1 WFR concept**
- **2.2.2 WFR feasibility**

2.3 WFR Error Analysis

- **2.3.1 Windowed Fourier spectrum of the noise and its probabilistic properties**
- **2.3.2 Windowed Fourier spectrum of a noisy EPF and its probabilistic properties**
- **2.3.3 Local frequency error**
- **2.3.4 Phase error**
- **2.3.5 Window size and shape**

2.4 WFR Implementation and Performance

- **2.4.1 Implementation**
- **2.4.2 Default parameter setting**
- **2.4.3 Speed**
- **2.4.4 Accuracy verification**

2.5 Problem Statement in 2D EPF Analysis

2.6 2D Windowed Fourier Ridges Algorithm (WFR2)

2.7 WFR2 Error Analysis

- **2.7.1 Local frequency errors**
- **2.7.2 Phase error**
- **2.7.3 Window size and shape**

2.8 WFR2 Implementation and Performance

- **2.8.1 Implementation**
- **2.8.2 Default parameter setting**
- **2.8.3 Speed**
 - **2.8.3.1 Separable implementation**
 - **2.8.3.2 Fourier implementation**
 - **2.8.3.3 Analytical implementation**
 - **2.8.3.4 Hardware implementation**
- **2.8.4 Accuracy verification**

2.9 Two Real Examples

- **2.9.1 EPF with light noise**
- **2.9.2 EPF with heavy noise**

2.10 n-Dimensional Windowed Fourier Ridges (WFRn)

Appendix 2A Perturbation Analysis of a 1D Estimator

Appendix 2B Perturbation Analysis of a 2D Estimator

References

3 Windowed Fourier Filtering for Exponential Phase Fields

- **3.1 1D Windowed Fourier Filtering (WFF)**
 - **3.1.1 1D windowed Fourier transform pair**
 - **3.1.1.1 Frame**
 - **3.1.1.2 Reconstruction**
 - **3.1.2 WFF concept**
3.2 WFF Error Analysis 85
3.2.1 Thresholded coefficients for reconstruction 85
3.2.2 Intrinsic signal after filtering 87
3.2.3 Noise after filtering 88
3.2.4 Noisy signal after filtering 89
3.2.5 Phase error 89
3.2.6 Frequency error 90
3.3 WFF Implementation and Performance 91
3.3.1 Implementation 91
3.3.2 Default parameter setting 91
3.3.3 Speed 92
3.3.4 Accuracy verification 93
3.4 WFF for Higher-Order Polynomial Phase 94
3.5 2D Windowed Fourier Filtering (WFF2) 96
3.6 WFF2 Error Analysis 98
3.6.1 Thresholded coefficients for reconstruction 98
3.6.2 Intrinsic signal after filtering 100
3.6.3 Noise after filtering 100
3.6.4 Noisy signal after filtering 101
3.6.5 Phase error 101
3.6.6 Frequency error 102
3.7 WFF2 Implementation and Performance 103
3.7.1 Implementation 103
3.7.2 Default parameter setting 104
3.7.3 Speed 104
3.7.4 Accuracy verification 105
3.8 WFF2 for a Higher-Order Polynomial Phase 106
3.9 Two Real Examples 108
3.9.1 EPF with light noise 108
3.9.2 EPF with heavy noise 109
3.10 n-D Windowed Fourier Filtering (WFFn) 110

References 111

4 Quality-guided Phase Unwrapping and Refinement 113
4.1 Exponential Phase Fields versus Wrapped Phase Maps 113
4.2 WFR2/WFF2-assisted and Quality-guided Phase Unwrapping (WFR2/WFF2-QG) 117
4.2.1 WFR2/WFF2 denoising in phase unwrapping 117
4.2.2 WFR2/WFF2 for invalid region identification in phase unwrapping 118
4.2.3 WFR2/WFF2-assisted quality-guided phase unwrapping 120
4.2.4 Dealing with true phase discontinuities 121
4.2.5 Gabor meets Gabor 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Implementation of the WFR2/WFF2-QG</td>
<td>124</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Direct implementation</td>
<td>124</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Implementation with interlaced indexed linked list (I2L2)</td>
<td>125</td>
</tr>
<tr>
<td>4.4</td>
<td>Phase Refinements</td>
<td>127</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Phase congruence</td>
<td>127</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Denoising the congruent phase by least squares fitting</td>
<td>128</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>5</td>
<td>Carrier Fringe Pattern Demodulation</td>
<td>137</td>
</tr>
<tr>
<td>5.1</td>
<td>WFR2/WFF2 for Carrier Fringe Pattern Demodulation</td>
<td>137</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Carrier fringe pattern model</td>
<td>137</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Demodulation using only the Fourier transform (FT)</td>
<td>139</td>
</tr>
<tr>
<td>5.1.3</td>
<td>FT-WFR2/WFF2 for sequential demodulation and denoising</td>
<td>141</td>
</tr>
<tr>
<td>5.1.4</td>
<td>WFR2/WFF2 for simultaneous demodulation and denoising</td>
<td>141</td>
</tr>
<tr>
<td>5.1.5</td>
<td>FT-WFR2/WFF2 versus WFR2/WFF2</td>
<td>143</td>
</tr>
<tr>
<td>5.2</td>
<td>WFR2/WFF2 for Fringe Projection Profilometry</td>
<td>145</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>149</td>
</tr>
<tr>
<td>6</td>
<td>Denoising a Single Closed Fringe Pattern</td>
<td>153</td>
</tr>
<tr>
<td>6.1</td>
<td>Adaptive Windowed Fourier Filtering</td>
<td>153</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Closed-fringe-pattern model</td>
<td>154</td>
</tr>
<tr>
<td>6.1.2</td>
<td>WFF2 for denoising a closed fringe pattern</td>
<td>155</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Adaptive WFF2 (AWFF2) for denoising a closed fringe pattern</td>
<td>156</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Simulation results</td>
<td>158</td>
</tr>
<tr>
<td>6.2</td>
<td>Fringe Orientation Estimation</td>
<td>158</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Definitions of fringe orientation and direction</td>
<td>159</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Gradient-based fringe orientation estimation</td>
<td>161</td>
</tr>
<tr>
<td>6.2.2.1</td>
<td>Gradient-based method</td>
<td>161</td>
</tr>
<tr>
<td>6.2.2.2</td>
<td>Extended gradient-based method</td>
<td>164</td>
</tr>
<tr>
<td>6.2.2.3</td>
<td>A simulation example</td>
<td>164</td>
</tr>
<tr>
<td>6.2.2.4</td>
<td>Other methods</td>
<td>165</td>
</tr>
<tr>
<td>6.2.2.5</td>
<td>Structure tensor representation</td>
<td>166</td>
</tr>
<tr>
<td>6.2.2.6</td>
<td>Complex representation</td>
<td>166</td>
</tr>
<tr>
<td>6.2.3</td>
<td>WFR2-based fringe orientation estimation</td>
<td>166</td>
</tr>
<tr>
<td>6.3</td>
<td>Oriented Filters: Oriented PDEs, ACED, and Spin Filters</td>
<td>168</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Isotropic diffusion</td>
<td>168</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Anisotropic diffusion through oriented PDEs</td>
<td>170</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Anisotropic diffusion through ACED</td>
<td>171</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Spin filters</td>
<td>175</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Error analysis</td>
<td>176</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Simulation results</td>
<td>177</td>
</tr>
<tr>
<td>6.4</td>
<td>AWFF2 versus ACED: Summary and a Real Example</td>
<td>178</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>179</td>
</tr>
</tbody>
</table>
7 Demodulating a Single Closed Fringe Pattern 183

7.1 Fundamental Problems in Demodulating a Single Closed Fringe Pattern 183

7.2 Fringe Background Removal and Amplitude Normalization 184
7.2.1 Background removal 184
7.2.2 Amplitude normalization 185
7.2.3 Simultaneous background removal and amplitude normalization 188
7.2.3.1 Spatial scanning method 188
7.2.3.2 Temporal scanning method 189
7.2.3.3 Differentiation method 189
7.2.3.4 Statistical method 189
7.2.3.5 Phase-shifting method 189
7.2.4 Discussion of ill-posedness 190

7.3 The WFR2 and the Quadrature Transform: Transform-based Demodulation 191
7.3.1 WFR2 algorithm 191
7.3.1.1 Examples 194
7.3.2 Quadrature transform 196
7.3.2.1 Examples 198
7.3.3 Summary and similar works 199

7.4 Frequency-guided Sequential Demodulation (FSD): Decoupled Demodulation 200
7.4.1 FSD algorithm 200
7.4.1.1 Examples 203
7.4.2 Fast FSD algorithm 204
7.4.2.1 Examples 204
7.4.3 Summary and similar works 205

7.5 Regularized Phase Tracking Technique: Integrated Demodulation 207
7.5.1 RPT algorithm 207
7.5.1.1 Examples 209
7.5.2 Quadratic phase matching and frequency-guided RPT (QFGRPT) algorithm 210
7.5.2.1 Examples 212
7.5.3 QFGRPT incorporating the fringe amplitude \(b(x, y) \) (bQFGRPT) 213
7.5.3.1 Examples 214
7.5.4 Generalized RPT (GRPT) 215
7.5.4.1 Examples 216
7.5.5 Summary and similar works 217

7.6 Two Real Examples 219

7.7 Dealing with Discontinuity 223

Appendix 7A Frequency-guided Orientation Unwrapping for Direction Estimation 225
Appendix 7B Derivation of $\nabla f_v(x, y)/|\nabla \varphi(x, y)|$ 226
Appendix 7C Levenberg–Marquardt (LM) Optimization Method 228
Appendix 7D From the GRPT to the tML 230
References 231

8 Extracting Dynamic Phase from a Sequence of Fringe Patterns 239
8.1 Introduction 239
 8.1.1 Fringe pattern sequence model 239
 8.1.2 Temporal phase-shifting methods 240
 8.1.3 Spatial phase-shifting methods 241
 8.1.4 Spatial Fourier transform method and other transform-based methods 242
 8.1.5 Temporal Fourier transform method and other transform-based methods 242
8.2 Spatiotemporal Least-Squares Approaches to Some Unknowns (LSxU) 243
 8.2.1 Spatiotemporal coherence 244
 8.2.2 LS3U 244
 8.2.3 LS2U 246
 8.2.4 LS1U 247
 8.2.5 Important considerations 247
 8.2.5.1 Rereferencing 248
 8.2.5.2 Initial status 248
 8.2.5.3 Neighborhood size 248
 8.2.5.4 Denoising 248
 8.2.6 Related works 249
8.3 LSxU Error Analysis 250
8.4 LSxU Implementation and Performance 253
 8.4.1 Implementation 253
 8.4.2 Fringe projection profilometry example 253
 8.4.3 Speckle shearography example 253
References 256

9 Algorithm Acceleration Using Parallel Computing 263
9.1 Introduction 263
 9.1.1 Parallel computing 263
 9.1.2 Parallel computing hardware 264
 9.1.3 Rationale of parallel fringe pattern analysis 265
 9.1.4 Existing works on parallel fringe pattern analysis 266
9.2 Accelerating the WFF2 by Parallel Computing 267
 9.2.1 Task parallelism through a multicore computer 267
 9.2.2 Data parallelism through a GPU 270
References 272

Index 275
Preface

Fringe patterns can be formed coherently using various interferometers and incoherently using the moiré technique. They can also be designed in fringe projection profilometry. All of these techniques are useful for full-field, noncontact, and high-sensitivity measurement. The primary goal of fringe pattern analysis is to extract the hidden phase distributions that generally relate to the physical quantities being measured. This book addresses the challenges and solutions involved in this process. Both theoretical analysis and algorithm development are covered to facilitate the work of both researchers and engineers. The information herein may also serve as a specialized subject for students of optical and computer engineering. Readers are encouraged to provide the author with feedback for improvement.

I would like to thank all of my collaborators, Prof. Anand Asundi, Dr. Yu Fu, Dr. Wenjing Gao, Dr. Lei Huang, Ms. Nguyen Thi Thanh Huyen, Prof. Li Kai, Prof. Feng Lin, Dr. Qi Liu, Dr. Ho Sy Loi, Prof. Hong Miao, Mr. Le Tran Hoai Nam, Prof. Bing Pan, Prof. Hock Soon Seah, Dr. Fangjun Shu, Prof. Xianyu Su, Dr. Haixia Wang, Prof. Xiaoping Wu, Prof. Huimin Xie, Prof. Boqin Xu, Prof. Qican Zhang, and Mr. Ming Zhao. Because of you, I have been enjoying the beauty of fringe patterns. Special thanks go to Dr. Lei Huang, Dr. Haixia Wang, and Dr. Wenjing Gao for proofreading my manuscript, and to the peer reviewers who provided encouragement and constructive comments. Thanks also go to Mr. Timothy Lamkins for quickly turning a proposal into a project, to editor Kerry Eastwood for her professional and terrific hard work on the manuscript, to the SPIE staff who have helped facilitate the production of this book, and to SPIE Press for publishing the book. Finally, I owe much thanks to my parents, my parents-in-law, my wife Xiaocong, and my son Zihan for their love and support.

Qian Kemao
Nanyang Technological University
July 2013
Glossary of Terms and Acronyms

\(a, a_x, a_y\) Background intensity of a fringe pattern and its derivatives
A3 Accurate, automatic, and accelerated
ACED Adapted coherence enhancing diffusion
AIA Advanced iterative algorithm
AQF Adapted quadratic filter
arctan Arctangent function
arg max \(p\) that maximizes
arg min \(p\) that minimizes
atan2 Four-quadrant arctangent function
AWFF2 Adaptive windowed Fourier filtering
\(b, b_x, b_y\) Fringe amplitude and its derivatives
bQFGRPT Amplitude included, quadratic-phase-matched and frequency-guided RPT
CCD Charge-coupled device
CED Coherence enhancing diffusion
CO Congruence operation
CO-LSF Congruence operation and least squares fitting
CPF Cubic phase function
CPU Central processing unit
CUDA Compute unified device architecture
\(c_{xx}, c_{xy}, c_{yy}\) Local curvatures
D1 Ill-posedness problem
D2 Sign ambiguity problem
D3 Order ambiguity problem
D4 Noise problem
D5 Discontinuity problem
DIC Digital image correlation
EMD Empirical mode decomposition
EPF Exponential phase field
ESPI	Electric speckle pattern interferometry
f | Fringe intensity
Ff | Fourier spectrum of f
FFRPT | Fringe-follower RPT
FFSD | Fast FSD
FFT | Fast Fourier transform
FG | Frequency guidance or frequency guided
FGRPT | Frequency-guided regularized phase tracking
FGWFR2 | Frequency-guided WFR2
fn | Fringe pattern with zero background and unit amplitude
Fn | Fourier spectrum of n
\|f\|_p | L⁰ or Lᵖ norm of f
FPDem | Fringe pattern demodulation
FPDen | Fringe pattern denoising
FPP | Fringe projection profilometry
fps | Frames per second
FSD | Frequency-guided sequential demodulation
FSD-LM | FSD with LM optimization
FT | Fourier transform
fv | Fringe pattern with zero background
\(g(x,y)\) | 2D window function
GPGPU | General-purpose graphic processing unit
GPU | Graphic processing unit
GRPT | Generalized RPT
\(g_x(x), g_y(y)\) | Window functions
\(g_{\xi_x}(x), g_{\xi_y}(y)\) | Windowed Fourier kernels
\(g_{\xi_x, \xi_y}(x,y)\) | 2D windowed Fourier kernel
I2L2 | Interlaced indexed linked list
IFSAR | Interferometric synthetic aperture radar
IILL | Interlaced indexed linked list
ILL | Indexed linked list
Im | Imaginary part of a complex number
IMF | Intrinsic mode function
j | Imaginary number (\(\sqrt{-1}\))
k | Integer
LAQF | Local adaptable quadrature filter
LDV | Laser Doppler vibrometry
LFR | Least-frequent rereferencing
LL | Linked list
LM | Levenberg–Marquardt
LS1U | Least squares for 1 unknown
LS2U | Least squares for 2 unknowns
LS3U | Least squares for 3 unknowns
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSF</td>
<td>Least squares fitting</td>
</tr>
<tr>
<td>LSxU</td>
<td>Least squares for x unknowns</td>
</tr>
<tr>
<td>MAPE</td>
<td>Maximum absolute phase error</td>
</tr>
<tr>
<td>MFR</td>
<td>Most-frequent rereferencing</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum likelihood</td>
</tr>
<tr>
<td>n</td>
<td>Noise</td>
</tr>
<tr>
<td>n-D</td>
<td>n-dimensional</td>
</tr>
<tr>
<td>n_d</td>
<td>Phase gradient</td>
</tr>
<tr>
<td>N_d</td>
<td>Phase normal, normalized n_d</td>
</tr>
<tr>
<td>NI</td>
<td>Number of iterations</td>
</tr>
<tr>
<td>n_o</td>
<td>Fringe gradient</td>
</tr>
<tr>
<td>N_o</td>
<td>Fringe normal, normalized n_o</td>
</tr>
<tr>
<td>N_{wx}, N_{wy}</td>
<td>Window size</td>
</tr>
<tr>
<td>N_x, N_y</td>
<td>Image size</td>
</tr>
<tr>
<td>p</td>
<td>Parameter vector</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle component analysis</td>
</tr>
<tr>
<td>PCT</td>
<td>Parallel computing toolbox</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial differential equation</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability density function</td>
</tr>
<tr>
<td>peaks</td>
<td>MATLAB peaks function</td>
</tr>
<tr>
<td>PIRPT</td>
<td>Path-independent regularized phase tracking</td>
</tr>
<tr>
<td>PPT</td>
<td>Polynomial phase transform</td>
</tr>
<tr>
<td>PZT</td>
<td>Piezoelectric transducer</td>
</tr>
<tr>
<td>QFGRPT</td>
<td>Quadratic-phase-matched and frequency-guided RPT</td>
</tr>
<tr>
<td>QFSD</td>
<td>Quadratic-phase-matched FSD</td>
</tr>
<tr>
<td>QG</td>
<td>Quality guidance or quality guided</td>
</tr>
<tr>
<td>QT</td>
<td>Quadrature transform</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>Real numbers</td>
</tr>
<tr>
<td>Re</td>
<td>Real part of a complex number</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>RPD</td>
<td>Robust phase demodulation</td>
</tr>
<tr>
<td>RPT</td>
<td>Regularized phase tracking</td>
</tr>
<tr>
<td>s</td>
<td>Sign map</td>
</tr>
<tr>
<td>SCPS</td>
<td>Spatial carrier phase shifting</td>
</tr>
<tr>
<td>Sf</td>
<td>Windowed Fourier spectrum of f</td>
</tr>
<tr>
<td>sign</td>
<td>Sign function</td>
</tr>
<tr>
<td>sML</td>
<td>Simplified maximum likelihood</td>
</tr>
<tr>
<td>Sn</td>
<td>Windowed Fourier spectrum of n</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
</tr>
<tr>
<td>SPS</td>
<td>Spatial phase shifting</td>
</tr>
<tr>
<td>t</td>
<td>Temporal coordinate</td>
</tr>
<tr>
<td>T_1</td>
<td>Exponential phase fields</td>
</tr>
<tr>
<td>T_2</td>
<td>Wrapped phase maps</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>T3</td>
<td>Carrier fringe patterns</td>
</tr>
<tr>
<td>T4</td>
<td>A single closed fringe pattern</td>
</tr>
<tr>
<td>t<sub>d</sub></td>
<td>Phase tangent</td>
</tr>
<tr>
<td>T<sub>d</sub></td>
<td>Fringe direction, normalized t<sub>d</sub></td>
</tr>
<tr>
<td>thr</td>
<td>Threshold</td>
</tr>
<tr>
<td>TLF</td>
<td>Total local frequency</td>
</tr>
<tr>
<td>tML</td>
<td>Tracking maximum likelihood</td>
</tr>
<tr>
<td>t<sub>o</sub></td>
<td>Fringe tangent</td>
</tr>
<tr>
<td>T<sub>o</sub></td>
<td>Fringe orientation, normalized t<sub>o</sub></td>
</tr>
<tr>
<td>TPS</td>
<td>Temporal phase shifting</td>
</tr>
<tr>
<td>WFF</td>
<td>Windowed Fourier filtering</td>
</tr>
<tr>
<td>WFF2</td>
<td>2D windowed Fourier filtering</td>
</tr>
<tr>
<td>WFFn</td>
<td>n-D windowed Fourier filtering</td>
</tr>
<tr>
<td>WFR</td>
<td>Windowed Fourier ridges</td>
</tr>
<tr>
<td>WFR2</td>
<td>2D windowed Fourier ridges</td>
</tr>
<tr>
<td>WFRn</td>
<td>n-D windowed Fourier ridges</td>
</tr>
<tr>
<td>WFT</td>
<td>Windowed Fourier transform</td>
</tr>
<tr>
<td>(u, v)</td>
<td>Spatial coordinates</td>
</tr>
<tr>
<td>(x, y)</td>
<td>Spatial coordinates</td>
</tr>
<tr>
<td>(x<sub>i</sub>, y<sub>i</sub>)</td>
<td>Spatial coordinates of pixel i</td>
</tr>
<tr>
<td>Z</td>
<td>Integer numbers</td>
</tr>
<tr>
<td>α, α<sub>x</sub>, α<sub>y</sub></td>
<td>Respective intermediate values for a, a<sub>x</sub>, a<sub>y</sub> during optimization</td>
</tr>
<tr>
<td>α<sub>xx</sub>, α<sub>xy</sub>, α<sub>yy</sub></td>
<td>Respective intermediate values for c<sub>xx</sub>, c<sub>xy</sub>, c<sub>yy</sub> during optimization</td>
</tr>
<tr>
<td>β, β<sub>x</sub>, β<sub>y</sub></td>
<td>Respective intermediate values for b, b<sub>x</sub>, b<sub>y</sub> during optimization</td>
</tr>
<tr>
<td>δ(·)</td>
<td>Delta function or error of estimation</td>
</tr>
<tr>
<td>Δφ</td>
<td>Phase change or shift</td>
</tr>
<tr>
<td>θ</td>
<td>Fringe orientation</td>
</tr>
<tr>
<td>δ</td>
<td>Fringe direction</td>
</tr>
<tr>
<td>λ, λ<sub>1</sub>, λ<sub>2</sub></td>
<td>Weights</td>
</tr>
<tr>
<td>μ(·)</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>ξ<sub>t</sub></td>
<td>Frequency coordinates corresponding to t</td>
</tr>
<tr>
<td>ξ<sub>ti</sub></td>
<td>Frequency sampling interval of ξ<sub>t</sub></td>
</tr>
<tr>
<td>[ξ<sub>tl</sub>, ξ<sub>th</sub>]</td>
<td>Frequency band of ξ<sub>t</sub></td>
</tr>
<tr>
<td>ξ<sub>x</sub></td>
<td>Frequency coordinate corresponding to x, also intermediate value for ω<sub>x</sub> during optimization</td>
</tr>
<tr>
<td>ξ<sub>xi</sub></td>
<td>Frequency sampling interval of ξ<sub>x</sub></td>
</tr>
<tr>
<td>[ξ<sub>xl</sub>, ξ<sub>xh</sub>]</td>
<td>Frequency band of ξ<sub>x</sub></td>
</tr>
<tr>
<td>ξ<sub>y</sub></td>
<td>Frequency coordinate corresponding to y, also intermediate value for ω<sub>y</sub> during optimization</td>
</tr>
<tr>
<td>ξ<sub>yi</sub></td>
<td>Frequency sampling interval of ξ<sub>y</sub></td>
</tr>
</tbody>
</table>
Glossary of Terms and Acronyms

\(\xi_{y_i} \)
Frequency sampling interval of \(\xi_{y_i} \)

\([\xi_{y_i}, \xi_{y_i+1}]\)
Frequency band of \(\xi_{y_i} \)

\(\sigma_{(\cdot)} \)
Standard deviation

\(\sigma_x, \sigma_y \)
Window size

\(\tau \)
Temporal coordinate

\(\varphi \)
Phase distribution

\(\varphi_w \)
Wrapped phase

\(\psi \)
Intermediate value for \(\varphi \) during optimization

\((\omega_{cx}, \omega_{cy})\)
Carrier frequency

\((\omega_x, \omega_y)\)
Local frequency

\(\angle (\cdot) \)
Angle of a complex number

\(| \cdot | \)
Amplitude of a complex number

\((\cdot)^\dagger \)
Conjugate of a complex number

\((\cdot)^T \)
Transpose of a matrix or vector

\((\cdot)^a \)
With sign ambiguity

\((\cdot)^\wedge \)
An estimated value

\((\cdot)^\sim \)
A filtered value

\((\cdot)^\sim\)
An intermediate value during optimization

\(\infty \)
Infinity

\(\otimes \)
Convolution

\(\nabla \)
Gradient operator

\(\nabla \cdot \)
Divergence operator

\(\triangleq \)
“Define as”

\(\subset \)
A subset of

\(\in \)
An element of