Bibliography

Bibliography

Bibliography

Quinn, T. J., “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards,” *Metrologia* **30**, 103–541 (2003).

Index

2-DOF tip-tilt mount, 73

Abbé errors, 63–64
Abbé principle, 99
Abbé uncertainty, 113
absolute position, 1
absorption, 17
acceleration limitation, 40
acousto-optic modulator, 45
air refractive index, 95
alignment and setup sources, 92
alignment technique, 70
altitude effects, 107
amplitude demodulation, 27
amplitude sensitivities, 87
angle interferometer, 57
angle optics, 57
antireflection, 17
apertures, 66
azimuthal, 6

back beam, 44
balanced interferometers, 101
bandwidth sources, 92
beam leakage, 84
beam walkoff, 38
beam-steering optics, 62
Bragg angle, 45
breadboard hole grid, 70
beamsplitter alignment, 74
bubble level, 66
CCD camera, 66
circular polarization, 7

cosine error, 80–81, 96–97, 112
coverage factor, 91
crosstalk, 64
cube corner target, 96
cyclical error, 103
data age error, 105
data age uncertainty, 105
DC-level baseline, 34
deadpath error, 102
deadpath uncertainty, 102, 113
degree of freedom, 2
destructive interference, 9
detected irradiance, 10
detection bandwidth, 48
differential interferometers, 55
digital processor, 46
digital signal processors, 40
coaxial differential interferometer, 56
cohesion length, 19
column reference interferometers, 55
combined standard uncertainty, 115
combined uncertainty, 91
commercial interferometers, 67
complex notation, 8
complex polarization, 7
confidence interval, 90
constant velocity motion, 88
constructive interference, 9
deduced irradiance, 10
data age uncertainty, 105
DC-level baseline, 34
deadpath error, 102
deadpath uncertainty, 102, 113
degree of freedom, 2
destructive interference, 9
detected irradiance, 10
detection bandwidth, 48
differential interferometers, 55
digital processor, 46
digital signal processors, 40
Index

direct spectral analysis, 87
directional sensitivity, 27, 32
discrete Fourier transform, 52
displacement measurement model, 106
displacement measuring interferometers, 1
displacement-dependent sources, 92
DMI measurement model, 93
Doppler shift, 27, 34, 39
Doppler velocities, 39
double-pass configuration, 35
downshifts, 45
dynamic example, 105
dynamic range, 40

Edlén equation, 95
electric field vector, 5
electromagnetic radiation, 4
electronic phase interpolation, 53
environmental fluctuations, 59
environmental sources, 92
equation-based compensation, 107
error budget, 108, 110
error corrections, 106
error mapping, 104
Euler’s formula, 8
expanded uncertainty, 91
expected values, 93

fast axis, 15
field-programmable gate arrays, 40

first-order errors, 103
first-order periodic error, 84
fly height, 69
fold prism, 14
Fourier spectrum, 32
free spectral range, 44
frequency band, 48
frequency mixing, 36
frequency stability, 41
fringe contrast, 11–12, 23
fringe interpolation, 40
fringe order, 88
fringe visibility, 19
fringes, 18
full-width at half-maximum, 19
functional point, 63–64

Gaussian, 90
general form, 6
ghost reflections, 17, 71

half waveplates, 16
half-waveplate alignment, 76
handedness, 16
height reference, 69
HeNe gain spectrum, 41
heterodyne, 22
heterodyne frequency, 34
heterodyne frequency generation, 45
heterodyne interferometers, 30, 31
Heydemann correction, 82
homodyne, 22
homodyne interferometer, 23
Index

homodyne laser encoders, 29
humidity, 95

in-line beam steering, 79
input estimates, 89
interference, 1, 8, 9
interference detection, 46
interference term, 10–11
interferometer deadpath, 102
interferometer fold constant, 21
interferometer thermal drift, 101
interferometry systems, 22
intermediate frequency, 52
iodine-stabilized laser, 3
irises, 66
irradiance, 10

Jones matrices, 6

laser mode, 44
laser source, 41
lateral offset, 71
law of propagation of uncertainty, 91, 111
leakage beams, 85
leakage interference, 86
least significant bit, 114
left-hand circular, 7
Lissajous figure, 82
lock-in detection, 51
long coherence, 18

Malus’ law, 15
measurand, 89
measurement arm, 1, 20
measurement model, 89, 93, 110
meter, 3
Michelson interferometers, 18
mirror alignment, 81
mirror mounts, 72
multiaxis systems, 33, 62
multi-DOF interferometers, 63
negative Doppler shift, 39
NIST Shop Floor, 59
nonvacuum, 4

offset mirror, 72
optical breadboards, 68
optical feedback destabilization, 3
optical path, 1
optical path difference, 18, 20
optical path length, 101
optical power, 42
optical power efficiency, 25
optical reference, 31, 32
other uncertainties, 114
output estimate, 89
parameters, 110
periodic error, 36, 83, 85–86, 103
periodic error uncertainty, 103
phase change uncertainty, 98
phase changes, 20
phase measurements, 46
Index

phase meter electronics, 40
phase meter uncertainty, 114
phase quadrature, 27
phase quadrature measurement, 28, 49
phase-locked loop, 51
phase-sensitive detector, 29
phasor diagram, 8
photoconductive, 47
photodetector, 66
photovoltaic, 47
pitch, 2
plane mirror interferometers, 37, 97
plane mirror target, 35, 100
plane waves, 10
point alignment, 67–68
polar coordinates, 8
polarimeter, 74
polarization diagram, 6
polarization flipping, 78
polarization manipulation, 28
polarization overlap, 11
polarization scrambling, 70
polarization state, 5, 6
polarization-sensitive homodyne interferometer, 26
polarizer alignment, 75
polarizers, 15, 66
polarizing beamsplitters, 15, 74
position-sensitive detector, 66
positive Doppler shift, 39
power meter, 66
p-polarized light, 15, 26
practical standard, 3
pressure, 95
probability distribution, 90
quad-pass interferometer, 54
quadrature detection, 82
quantifying periodic error, 87
quarter waveplates, 16, 77
quasi-static example, 105
reference arm, 1, 20
refractive index, 4
refractive index tracker, 61
refractive index uncertainty, 95
refractive index variation, 112
refractometry, 59, 107
relative position, 1
retroreflector, 14
retroreflector homodyne interferometer, 24
retroreflector target, 100
right-hand circular, 7
Risley prisms, 55, 79
roll, 2
scatter, 17
second-order errors, 103
second-order periodic error, 84
sensitivity coefficients, 91
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>shear plates</td>
<td>14, 79</td>
</tr>
<tr>
<td>shot noise</td>
<td>42</td>
</tr>
<tr>
<td>signal preconditioning</td>
<td>46</td>
</tr>
<tr>
<td>signal strengths</td>
<td>11</td>
</tr>
<tr>
<td>silicon photodiodes</td>
<td>47</td>
</tr>
<tr>
<td>single beam</td>
<td>6</td>
</tr>
<tr>
<td>single-mode lasers</td>
<td>42</td>
</tr>
<tr>
<td>sinusoidal</td>
<td>90</td>
</tr>
<tr>
<td>Snell’s law</td>
<td>14, 79</td>
</tr>
<tr>
<td>source mixing</td>
<td>83</td>
</tr>
<tr>
<td>spatial Fourier analysis</td>
<td>88</td>
</tr>
<tr>
<td>spatial sampling frequency</td>
<td>88</td>
</tr>
<tr>
<td>spectral linewidth</td>
<td>19</td>
</tr>
<tr>
<td>speed of light</td>
<td>4</td>
</tr>
<tr>
<td>split frequency</td>
<td>22</td>
</tr>
<tr>
<td>s-polarized light</td>
<td>15, 26</td>
</tr>
<tr>
<td>stage displacement</td>
<td>109</td>
</tr>
<tr>
<td>standard uncertainty</td>
<td>89</td>
</tr>
<tr>
<td>steering mirror</td>
<td>78</td>
</tr>
<tr>
<td>straightness</td>
<td>2, 24</td>
</tr>
<tr>
<td>straightness errors</td>
<td>2</td>
</tr>
<tr>
<td>straightness</td>
<td></td>
</tr>
<tr>
<td>interferometer</td>
<td>58</td>
</tr>
<tr>
<td>straightness optics</td>
<td>58</td>
</tr>
<tr>
<td>stress birefringence</td>
<td>68</td>
</tr>
<tr>
<td>superposition principle</td>
<td>8</td>
</tr>
<tr>
<td>surface figure</td>
<td>104</td>
</tr>
<tr>
<td>surface figure error</td>
<td>104, 114</td>
</tr>
<tr>
<td>surface figure uncertainty</td>
<td>104</td>
</tr>
<tr>
<td>temperature</td>
<td>95</td>
</tr>
<tr>
<td>temporal coherence</td>
<td>19</td>
</tr>
<tr>
<td>thermal drift error</td>
<td>101</td>
</tr>
<tr>
<td>thermal drift uncertainty</td>
<td>101</td>
</tr>
<tr>
<td>time interval analysis</td>
<td>46, 50</td>
</tr>
<tr>
<td>tip-tilt-Z system</td>
<td>65</td>
</tr>
<tr>
<td>tolerances</td>
<td>25</td>
</tr>
<tr>
<td>traceability</td>
<td>3</td>
</tr>
<tr>
<td>traceability chain</td>
<td>3</td>
</tr>
<tr>
<td>transimpedance amplifier</td>
<td>47</td>
</tr>
<tr>
<td>triangular</td>
<td>90</td>
</tr>
<tr>
<td>two-mode intensity-balanced lasers</td>
<td>44</td>
</tr>
<tr>
<td>Twyman–Green interferometers</td>
<td>18</td>
</tr>
<tr>
<td>Type-A methods</td>
<td>89</td>
</tr>
<tr>
<td>Type-B methods</td>
<td>89</td>
</tr>
<tr>
<td>Type-B uncertainties</td>
<td>90</td>
</tr>
<tr>
<td>uncertainty estimate</td>
<td>110</td>
</tr>
<tr>
<td>uncorrelated uncertainties</td>
<td>91</td>
</tr>
<tr>
<td>unequal plane mirror interferometer</td>
<td>35</td>
</tr>
<tr>
<td>uniform</td>
<td>90</td>
</tr>
<tr>
<td>unwrapping</td>
<td>21</td>
</tr>
<tr>
<td>upshifts</td>
<td>45</td>
</tr>
<tr>
<td>vacuum</td>
<td>4</td>
</tr>
<tr>
<td>vacuum permeability</td>
<td>4</td>
</tr>
<tr>
<td>vacuum permittivity</td>
<td>4</td>
</tr>
<tr>
<td>vacuum wavelength</td>
<td>4, 94</td>
</tr>
<tr>
<td>vector alignment</td>
<td>67–68</td>
</tr>
<tr>
<td>wavefront distortion</td>
<td>68</td>
</tr>
<tr>
<td>wavelength tracking</td>
<td>60, 107</td>
</tr>
<tr>
<td>wavefront distortion</td>
<td>68</td>
</tr>
<tr>
<td>Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>wavelength uncertainty</td>
<td>111</td>
</tr>
<tr>
<td>wedged optics</td>
<td>14</td>
</tr>
<tr>
<td>white light</td>
<td>19</td>
</tr>
<tr>
<td>Wollaston prism</td>
<td>58</td>
</tr>
<tr>
<td>X-Y-theta systems</td>
<td>64</td>
</tr>
<tr>
<td>yaw</td>
<td>2</td>
</tr>
<tr>
<td>Zeeman effect</td>
<td>43</td>
</tr>
<tr>
<td>Zeeman stabilized laser</td>
<td>42–43</td>
</tr>
<tr>
<td>zero-crossing detector</td>
<td>50</td>
</tr>
</tbody>
</table>
Jonathan D. Ellis is currently an Assistant Professor at the University of Rochester with a joint appointment in the Department of Mechanical Engineering and the Institute of Optics. He obtained his doctorate from the Delft University of Technology in the Netherlands, and M.S. and B.S. degrees from the University of North Carolina at Charlotte, all in mechanical engineering. He actively participates in SPIE, the Optical Society of America (OSA), and the American Society for Precision Engineering (ASPE). He currently serves as Director-at-Large and Treasurer for ASPE.

Professor Ellis’ research interests are in precision engineering, interferometry, optical metrology, instrumentation for primary standards level metrology, freeform optics fabrication and metrology, and precision scanning systems.