Index

A
absorptive amplitude, 6
accepting modes, 74
accepting phonons, 74
adiabatic approximation, 119
adiabatic potential curves, 73
angular momentum, 53
astigmatically compensated system, 92
azimuthal direction, 222
coherence length, 124
coherece time, 124
colquirite fluoride, 133
configurational coordinate, 118
correlation diagram, 72
Coulombic interaction, 49
Cr-doped chalcogenides, 98
Cr⁴⁺-doped crystals, 194
crystal growth, 116
crystal-field parameters, 135
crystal-field perturbation, 36
crystal-field strength, 59
Crystal-Field Theory, 28
crystallographic directions, 222
Czochralski method, 114, 143

B
binary and ternary compounds, 102
birefringence, 111, 221
Boltzmann constant, 19, 75, 117
Born–Oppenheimer approximation, 56, 119
Bose–Einstein occupation factor, 75
breathing mode, 136
Brewster plate, 179
bulk modulus, 113
cavity losses, 178
ceramic crystals, 210
ceramic Nd:YAG, 222
chalcogenides, 96
charge compensator, 194, 216
chromium ions, 49
classical model for absorption and emission processes, 5
Clebsch–Gordan coefficients, 25
close coupling, 128
decay rate, 144
depolarization, 222
detailed balance, 86
diode-pumped laser, 201
diode-pumped solid state laser (DPSSL), 198
disordered crystals, 217
dispersive amplitude, 6
distribution coefficient, 144
distribution or segregation coefficient, 115
efficient cross-section, 186
Einstein coefficients, 1–2
elastic deformation, 113

Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
elastic limit, 113
electric-dipole moment, 3
electric-dipole-allowed transition, 67
electron–phonon coupling, 65
electrostatic model, 29
energy density per unit frequency, 3
even parity, 38
extraordinary, 111

F
femtosecond (fs), 129
femtosecond laser, 125
femtosecond pulses, 91
Fermi’s golden rule, 14
figure of merit (FOM), 185
flashlamp-pumped laser, 128
fluorescent converters, 129
folded cavity, 92
forced electric-dipole transition, 38
four-level vibronic system, 129
Franck–Condon approximation, 77
Franck–Condon integrals, 77
Frank–Condon transitions, 74
Frantz–Nodvik equation, 184, 187
free running, 90, 175
free-ion spectra, 32

G
Gaussian lineshape function, 18
gerade, 51

H
hardness, 111
heat capacity, 112
Huang–Rhys factor, 145
Huang–Rhys parameter, 81, 122
hypersensitive transitions, 40

I
infinitely strong interaction, 55
infinitely weak interaction, 55
intermediate fields, 31

J
intermediate interaction, 55
ionic radius, 155
irreducible representation, 55

K
Jahn–Teller effect, 99, 120
Jahn–Teller theorem, 53
Kerr lens, 129
Kerr-lens mode locking (KLM), 93
Kramers theorem, 34

L
Landé interval rule, 27
lanthanide contraction, 22
Laporte rule, 56
lattice constant, 79, 112
lens duct, 101
ligands, 51
Lorentz force, 5
Lorentz model, 5
Lorentzian lineshape function, 17

M
magnetic-dipole and electric-quadrupole transitions, 39
magnetic-dipole-allowed transitions, 74
magnetic quantum number, 40
many-electron atomic system, 53
microlasers, 194
mixing, 35
mode locking (ML), 148
modulation frequency, 198, 206
Mohs units, 111
Mott activation energy, 136
multiphonon decay, 76
multiphonon process, 76
multiplets, 35

N
Nd:YAG, 85
Nd:YAG ceramics, 210
Nd:YLF, 85
nonadiabatic Hamiltonian, 74
nonradiative processes, 86, 95

O
octahedral symmetry, 51
odd parity, 38
open-structure crystals, 217
optical parametric oscillation (OPO), 85
orbital momenta, 24
orbitals, 51
ordinary, 111

P
parity forbidden, 38
passive Q-switch, 175, 179
peak power, 176
Pekarian lineshape, 77
phonon occupation number, 145
phonon-assisted optical transitions, 62
phonon-terminated lasers, 85
photoacoustic spectroscopy, 96
Planck’s distribution law, 4
Pockels cell, 176
Poisson’s ratio, 112, 114
population inversion, 178
projection quantum number, 24
promoting modes, 74

Q
Q-switching, 148
quantum-yield, 95

R
Rabi frequency, 14
Rabi oscillations, 15
Racah parameters, 57
radial direction, 222
reabsorption processes, 95
refraction indices, 111
regenerative amplifier, 151
round-trip lifetime, 176
Russell–Saunders coupling, 23

S
saturable absorber, 183
saturation fluence, 186
saturation transmission, 185
second harmonic generation (SHG), 85
selection rules, 39
self Q-switching, 194, 201
semiconductor saturable absorption mirror (SESAM), 93
sesquioxides, 206
shear modulus, 114
shear stress, 113
small-signal absorption, 205
spherical field, 51
spherical harmonic function, 50
spin allowed, 99
spin selection rule, 56
spin–orbit coupling, 24, 34
spin–orbit interaction, 61
spontaneous emission, 1, 181
Stark-level splitting, 35
stimulated absorption, 1
stimulated Raman scattering (SRS), 85
Stokes shift, 95, 118
stress, 112
strong fields, 31

T
Tanabe–Sugano correlation diagram, 57, 74
Tanabe–Sugano energy-level diagram, 97, 134
tensile strength, 112
tetrahedral symmetry, 51
thermal conductivity, 100, 112
thermal lensing, 209
thermal load, 222
thermal shock parameter, 112
thermal-induced birefringence, 222
third harmonic generation (THG), 85
three-level nature, 205
Ti:sapphire, 111
total angular momentum, 54
total round-trip loss, 176
transition probability, 13
transition-metal elements, 49
transition-metal ions, 100
tunable UV lasers, 151

U
ultrashort pulses, 129
ungerade, 51
upconversion, 142

V
vibronic laser, 118-119

W
weak fields, 31

Y
Yb-doped crystal, 206
Young’s modulus, 114

Z
Zeeman effect, 27
zero-phonon line, 79
Dr. Yehoshua Kalisky is a senior scientist at the Nuclear Research Center Negev (NRCN). He graduated from the Hebrew University of Jerusalem in chemistry and physics, followed by a postdoctoral fellowship at Xerox Corp., USA. Since that time he has initiated and conducted research with significant scientific and technical contributions to the field of solid state spectroscopy, photophysical processes in laser materials, photonics, electro-optics, and laser physics. As a researcher, manager, and group leader he has played a major role in the development of various types of solid state, dye, and gas lasers and implementing them in various applications.

In recent years, he was instrumental in the design of solid state laser systems and the development of novel types of passively Q-switched, diode-pumped solid state lasers and relevant technologies for industrial applications. Dr. Kalisky has spent several years in leading laser industries and universities in the USA, France, and Israel. He was awarded several prizes in recognition of his achievements, including a prize for excellent work (1974, 1979), a Medal of Excellence from the President of Lyon University (2002), a Prize for Excellent Optical System Design (2002), and a National Prize (2007). Dr. Kalisky is an SPIE Fellow (2007) and the author of the book *The Physics and Engineering of Solid State Lasers* (SPIE Press, 2006). He is also the author and coauthor of over 240 scientific publications, several book chapters, five international patents, and numerous invited conference presentations.