Fundamentals of Dispersive Optical Spectroscopy Systems
Table of Contents

Preface
xiii

Glossary of Symbols and Notation
xv

1 Introduction, Terminology, and Scales
1.1 General Introduction
1.2 Photon Energies
1.3 Photon-Energy Conversion Equations
1.4 Naming Convention
1.5 The Spectral Line
1.6 General Rule of Optical Transfer
1.7 Definitions
1.7.1 Exponential functions and signal damping (attenuation)
1.7.2 Low-pass filter functions
1.7.2.1 A note on the dB interpretation
1.7.3 Definition of bandwidth in electric versus optical spectroscopy systems
1.8 Spectral Distribution of Thermal Radiation by Planck’s Law
1.9 Keeping Optics Clean
References

2 Spectrometer Concepts
2.1 Basic Principle of an Optical Spectrometer
2.1.1 Attributes of modular spectrometers
2.2 Basic Grating Parameters and Functions
2.2.1 The free spectral range
2.2.2 Dispersion of gratings and prisms
2.3 Existing Basic-Spectrometer Concepts
2.3.1 The Littrow configuration
2.3.2 Ebert–Fastie configuration
2.3.2.1 Origin of astigmatism
2.3.3 Czerny–Turner configuration
2.4 Impacts and Distortions to Spectrometers
2.4.1 The influence of the internal angles on the wavelength
2.5 Other Spectrometers, Including Those for the Vacuum Range
2.5.1 Curved-grating spectrometer: Wadsworth setup 27
2.5.2 Normal incidence 27
2.5.3 Seya–Namioka 27
2.5.4 Grazing incidence 27
2.5.5 Rowland circle spectrometer and Paschen–Runge mount 28

2.6 Other Parameters and Design Features 28
2.6.1 Straight slits versus curved slits 28
2.6.2 Aperture and light flux (luminosity) 29
 2.6.2.1 Real aperture or f-number? 29
 2.6.2.2 Examples of the influence of the internal angles on the light flux 30
 2.6.2.3 Calculating the f-number versus Ω for light flux/luminosity 31
2.6.3 Dispersion of spectrometers 36
2.6.4 Intensity distribution in the exit 37
2.6.5 Spectral resolution 39
 2.6.5.1 Does one measure the resolution of the spectrometer or that of the experiment? 42
 2.6.5.2 When is a spectral curve completely reproduced? 43
 2.6.5.3 Rayleigh diffraction limit 44
 2.6.5.4 Resolution of a monochromator compared to that of a spectrograph 45
 2.6.5.5 Numerical resolution R_p and R_r, and their wavelength dependence 48
2.6.6 Image quality: Q-factor or fidelity 51
 2.6.6.1 Calculating aberrations 51
 2.6.6.2 A reflecting spectrometer has two or even three axes 52
 2.6.6.3 The slit height also influences the total aberrations 52
 2.6.6.4 The quality factor 53
 2.6.6.5 Image-transfer issues 53
 2.6.6.6 Spectrometers with internal image correction 56
 2.6.6.7 General aberrations and coma 57
2.6.7 False and stray light, and contrast 58
 2.6.7.1 Reducing stray light 59
2.6.8 Contrast ratio C 60

2.7 Mechanical Stability and Thermal Influence 60
 2.7.1 Measuring thermal variations 61
 2.7.2 Defocusing effects 61
 2.7.3 Typical thermal constants 61
 2.7.4 Minimizing environmental influence 63

2.8 Reduction of Unwanted Spectral Orders, and Other Filtering 63
 2.8.1 Long-pass filters 63
4.2 Grating Rotation and Actuation 100
 4.2.1 Classical driving system 101
 4.2.2 Grating actuation by a rotating system 102
4.3 Multiple-Stage Spectrometers 105
 4.3.1 Double-pass spectrometers 106
 4.3.2 Double spectrometers 107
 4.3.2.1 Subtractive spectrometers 108
 4.3.2.2 Efficiency behavior and analysis 110
 4.3.2.3 Energy transmission and bandwidth of single-, double-, and triple-stage spectrometers 110
 4.3.2.4 Effects of photon traveling time (time of flight) 111
 4.3.3 Construction considerations for double spectrometers 112
 4.3.3.1 Additive setup 112
 4.3.3.2 Subtractive setup 113
 4.3.3.3 Modern off-axis double spectrometers 114
 4.3.3.4 Mechanical filtering in double spectrometers 118
 4.3.4 Various configurations of flexible double spectrometers 118
 4.3.5 General performance data of double spectrometers versus similar single-stage systems 119
 4.3.6 Triple-stage spectrometers 120
4.4 Echelle Spectrometers 122
 4.4.1 Echelle monochromators and 1D spectrographs 123
 4.4.2 High-resolution Echelle spectrometer designed as a monochromator and 1D spectrograph 124
 4.4.2.1 Echelle aberrations 127
 4.4.2.2 Thermal drift assuming an aluminum chassis 127
 4.4.3 Two-dimensional Echelle spectrometer for the parallel recovery of wide wavelength ranges at high resolution 128
 4.4.3.1 Concept of a compact 2D Echelle 131
 4.4.3.2 Comparison of an Ebert–Fastie and a folded Czerny–Turner 133
 4.4.3.3 Constructive precautions 136
4.5 Hyperspectral Imaging 137
 4.5.1 Internal references 137
 4.5.2 Example of hyperspectral imaging 137
 4.5.2.1 Image reproduction and spectral recovery 139
 4.5.2.2 Overlaid hyperspectral image recovery 139
 4.5.2.3 Separated hyperspectral image recording 140
 4.5.2.4 Hyperspectral imaging supported by filters 140
 4.5.3 General design for hyperspectral imaging 141
 4.5.3.1 Design considerations 141
References 142
5 Detectors for Optical Spectroscopy

5.1 Introduction

- **5.1.1 Work and power of light signals**

5.1.2 Basic parameters of detectors

- **5.1.2.1 Pre-amplifier considerations and wiring**
- **5.1.2.2 General signals and sources of noise in optical detector systems**

- **5.1.3 Detection limit, noise, and SNR**
- **5.1.4 Detection limit, noise, and SNR in absolute measurements**
- **5.1.5 Detection limit, noise, and SNR in relative measurements**

5.2 Single-Point Detectors

- **5.2.1 Phototubes**
- **5.2.2 Comments on the interpretation of PMT data sheets**
- **5.2.3 A sample calculation for PMTs, valid for an integration time of 1 s**
- **5.2.4 Photon counter**
- **5.2.5 UV PMTs and scintillators**

5.3 Illumination of Detectors, Combined with Image Conversion

5.4 Channeltron® and Microchannel Plate

5.5 Intensified PMT and Single-Photon Counting

5.6 Solid State Detectors

- **5.6.1 General effect of cooling**
- **5.6.2 Planck's radiation equals blackbody radiation**
- **5.6.3 Detectors and the ambient temperature**
- **5.6.3.1 Signal modulation and synchronized detection**
- **5.6.3.2 Estimation of the modulated measurement**
- **5.6.4 Tandem detectors**
- **5.6.5 Typical parameters of solid state detectors, and their interpretation**

5.7 Design Considerations of Solid State Detectors

- **5.7.1 Illumination of small detector elements**
- **5.7.2 Charge storage in semiconductor elements, thermal recombination, and holding time**
- **5.7.3 PIN and avalanche diodes**
- **5.7.4 Detector coupling by fiber optics**

5.8 Area Detectors: CCDs and Arrays

- **5.8.1 Mounting of area detectors, the resulting disturbance, and the distribution of wavelengths**
- **5.8.1.1 Popular versions of area detectors**
- **5.8.2 Basic parameters of arrays and CCDs with and without cooling**
- **5.8.2.1 Pixel size, capacity, sources of noise, dynamic range, shift times, read-out time, and ADC conversion time**
- **5.8.2.2 Applicability of CCDs for spectroscopy, image processing, and photography**
5.8.3 Signal transfer and read-out
5.8.3.1 Combining the read-out in imaging mode and the display in spectroscopy mode
5.8.4 CCD architectures
5.8.5 CCD and array efficiency
5.8.5.1 Front-illuminated CCDs
5.8.5.2 Rear-side-illuminated CCDs
5.8.5.3 Interference of rear-side-illuminated CCDs: Etaloning
5.8.6 Time control: synchronization, shutter, and gating
5.8.6.1 Shutter control
5.8.6.2 Microchannel-plate image intensifiers
5.8.7 Current formats of area detectors
5.8.8 Read-out techniques: Multi-spectra spectroscopy, binning, and virtual CCD partition
5.8.8.1 Virtual CCD programming
5.8.9 CCDs and array systems with image intensification
5.8.9.1 CCDs with on-chip multiplication or electron multiplication (EMCCD)
5.8.9.2 CCDs with an additional microchannel-plate image intensifier (MCP-CCD)
5.8.10 Data acquisition in the ms–μs time frame
5.8.10.1 Kinetic measurements
5.8.10.2 Double-pulse measurements
5.8.11 Extending the spectral efficiency into the deep UV
5.8.12 NIR and IR area detectors
5.9 Other Area Detectors
5.9.1 CID and CMOS arrays
5.9.1.1 Typical CMOS parameters, and comparison to CCDs
5.9.2 Position-sensitive detector plate
5.9.3 Streak and framing camera

6 Illumination of Spectrometers and Samples: Light Sources, Transfer Systems, and Fiber Optics
6.1 Introduction and Representation of Symbols
6.2 Radiometric Parameters
6.3 Advantage of Using Ω and sr
6.4 Different Types of Radiation and Their Collection
6.4.1 Laser radiation
6.4.2 Cone-shaped radiation
6.4.3 Ball-shaped radiation from point sources: Lamps
6.4.3.1 Thermal filament lamps
6.4.3.2 Arc discharge lamps
6.4.3.3 Spectra of the various lamp types 217
6.4.3.4 Light collection and transfer into a spectrometer 218
6.4.4 Diffuse radiation collected by integrating spheres 219
 6.4.4.1 Collecting lamp radiation 222
 6.4.4.2 Approaching the parameters of a sphere 222
6.4.5 NIR radiation 224
6.4.6 IR radiators 225
6.5 Examples of Optimizing Spectrometer Systems 227
 6.5.1 Optimization of gratings 227
 6.5.2 Change-over wavelengths of lamps, gratings, and detectors 228
6.6 End Result of an Illumination Monochromator System 230
6.7 Light Transfer and Coupling by Fiber Optics 231
 6.7.1 Fiber guides, light-wave guides, and fiber optics 231
 6.7.2 Fiber optics for the UV–Vis–NIR range 232
 6.7.3 Fiber optic parameters and effects 233
 6.7.4 "Flexible optical bench," and a precaution about its handling 236
 6.7.5 Typical kinds and variations of single fibers and fiber cables 236
 6.7.5.1 Basic versions 236
6.8 Transfer Systems 239
 6.8.1 Coupling by bare optical fibers 239
 6.8.2 Coupling by lens systems 240
 6.8.3 Coupling by mirror systems 242
References 243

7 Calibration of Spectrometers 245
7.1 Calibration of the Axis of Dispersion, Wavelength, and Photon Energy 245
 7.1.1 Parameters that define the angular position of a dispersion element 245
7.1.2 Driving a grating or prism spectrometer 245
 7.1.2.1 Grating spectrometers with a sine-functional drive 246
 7.1.2.2 Calibrating a scanning system with a sine drive 247
 7.1.2.3 First calibration of a sine-driven system 247
 7.1.2.4 Parameters that can degrade the linearity 248
 7.1.2.5 Timing calibration checks and recalibration 248
 7.1.2.6 Recalibration requirements 249
 7.1.3 Grating spectrometers with a rotary drive 249
 7.1.4 Calibration of the field output 251
 7.1.4.1 Output dispersion as a function of the lateral position in the field output 252
7.2 Calibrating the Axis of Intensity, Signal, and Illumination 253
 7.2.1 Requirements for a useful calibration and portability of data 253
 7.2.2 Light sources for radiometric calibration 253
 7.2.3 Procedures to produce reliable calibrated data 254
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Transfer Efficiency of Spectrometers</td>
<td>256</td>
</tr>
<tr>
<td>7.3.1</td>
<td>General behavior</td>
<td>256</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Measurement of transfer efficiency</td>
<td>256</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>8</td>
<td>Stray and False Light: Origin, Impact, and Analysis</td>
<td>259</td>
</tr>
<tr>
<td>8.1</td>
<td>Origin of Stray Light</td>
<td>259</td>
</tr>
<tr>
<td>8.2</td>
<td>Impact of Stray Light</td>
<td>261</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Disturbance in the application of discrete spectral signals</td>
<td>261</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Disturbance in the application of broadband spectral signals</td>
<td>263</td>
</tr>
<tr>
<td>8.3</td>
<td>Analysis and Quantization of Stray Light in Spectrometers and Spectrophotometers</td>
<td>264</td>
</tr>
<tr>
<td>8.4</td>
<td>Minimizing the Impact of Disturbance through Optimization</td>
<td>266</td>
</tr>
<tr>
<td>8.5</td>
<td>Reducing Stray Light</td>
<td>267</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td>9</td>
<td>Related Techniques</td>
<td>269</td>
</tr>
<tr>
<td>9.1</td>
<td>Compact, Fiber-Optic-Coupled Spectrographs</td>
<td>269</td>
</tr>
<tr>
<td>9.2</td>
<td>Programmable Gratings</td>
<td>272</td>
</tr>
<tr>
<td>9.3</td>
<td>Bragg Gratings and Filters</td>
<td>272</td>
</tr>
<tr>
<td>9.4</td>
<td>Hadamard Spectrometer</td>
<td>273</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Principle of Hadamard measurements</td>
<td>274</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Hadamard setups</td>
<td>274</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>275</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>277</td>
</tr>
</tbody>
</table>
Preface

My search for universal and comprehensive literature on dispersive optical spectroscopy revealed many gaps. The books on very basic information are rather theoretical and dig deep into arithmetic derivations to calculate spectrometers, illumination, and detection. The books on the different applications of optical spectroscopy are mainly “cookbooks” and do not explain why something should be done in a certain way. Books with comprehensive content are available from the vendors of dispersers, spectrometers, detectors, and systems—they naturally feature the advantages of the supported products but offer no overall view.

For more than twenty years, I have calculated and delivered special dispersive spectroscopy systems for different applications. In the time between inquiry and decision, the customers wanted to justify my presentation and compare it. A common problem was finding useful references that could be used to verify my calculations and predictions. So, again and again, I wrote long letters combining the different parameters of the project presented. Several of my customers—industrial project managers as well as researchers—not only acknowledged the proposals but also often used the papers to check the instrumental performance at delivery. Because the proposals fit the requirements and the predictions were at least reached, their confidence was earned. Customers used my papers for internal documentation and teaching. Several asked me to provide the know-how in a general, written database in order to close the gap between theory, practice, and applications. After my retirement from regular work, I did just that, and published my writing on my homepage (www.spectra-magic.de). Now, the content has been improved and extended into a pair of printed books, the first of which you are reading now.

The aim of this book is to supply students, scientists, and technicians entering the field of optical spectroscopy with a complete and comprehensive tutorial; to offer background knowledge, overview, and calculation details to system designers for reference purpose; and to provide an easy-to-read compendium for specialists familiar with the details of optical spectroscopy.
Acknowledgments

My thanks are first addressed to my wife, Heidi, for her patience during the months spent investigating, reviewing, and writing. I also thank those who urged me to start writing in the first place and who collected data and calculations. The trigger to turn the homepage into written books came from Dr. Karl-Friedrich Klein, who kept me going and contacted SPIE. The section on fiber optics was supported by Joachim Mannhardt, who provided specifics and added features and ideas. After the manuscript was given to SPIE, external reviewers spent much effort on the content, providing corrections and suggestions for improvement; that valuable support came from Mr. Robert Jarratt and Dr. Alexander Sheeline. Last but not least, I’d like to thank Tim Lamkins, Scott McNeill, and Kerry McManus Eastwood at SPIE for the work they invested into the project.

I hope that readers will find useful details that further their interest or work.

Wilfried Neumann
May 2014
Glossary of Symbols and Notation

A Absorbance (extinction) in photometric absorption measurements
A Geometric area
A Light angle inside a prism
ADC (A/D-C) Analog-to-digital converter
A_{IG} Effective disperser area at a given disperser angle
A_{IM} Illuminated area of the focusing mirror
B Bandwidth
C Capacity
C Contrast; ratio of useful signal/disturbance
c_0 Speed of light
CCD Charge-coupled device
d Deflection angle at the prism
d Dispersed beam after a grating
D* Numeric capability of an IR detector for the recovery of low signals
dB Decibel
d_c Focus displacement after thermal change
d_p Focus increase after thermal change
e Base of the natural logarithm
E Deformation factor at the exit of a spectrometer
e^{-} Electron
E_{\lambda}(\lambda) Irradiance of a light beam on a normalized surface
el Elbow angle
eV Electron volt
f Focal length
f Frequency
f_c Angular frequency
FSR Free spectral range
FWHM Full width at half maximum
h Planck's constant (6.626 \times 10^{-34} \text{ Js})
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Slit height</td>
</tr>
<tr>
<td>H</td>
<td>Total aberration</td>
</tr>
<tr>
<td>hb</td>
<td>Number of pixels binned together</td>
</tr>
<tr>
<td>I</td>
<td>Parallel incident beam to grating or prism</td>
</tr>
<tr>
<td>i_1</td>
<td>Angle of the prism's incident light related to N</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>k</td>
<td>Absorption coefficient of a material</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann’s constant $(1.381 \times 10^{-23} \text{J}K^{-1})$</td>
</tr>
<tr>
<td>k</td>
<td>Grating constant for the distance of the grating lines</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>K</td>
<td>Thermal dilatation coefficient</td>
</tr>
<tr>
<td>L</td>
<td>Inductivity</td>
</tr>
<tr>
<td>L</td>
<td>Luminosity, light flux in spectrometers</td>
</tr>
<tr>
<td>$L_{(\lambda)}$</td>
<td>Radiance</td>
</tr>
<tr>
<td>LN</td>
<td>Liquid nitrogen</td>
</tr>
<tr>
<td>m</td>
<td>Modulation factor in lifetime measurements by phase/modulation</td>
</tr>
<tr>
<td>m</td>
<td>Spectral order number</td>
</tr>
<tr>
<td>M</td>
<td>Magnification factor</td>
</tr>
<tr>
<td>M</td>
<td>Radiant emittance/exitance</td>
</tr>
<tr>
<td>MCP</td>
<td>Microchannel plate; also, microchannel-plate image-intensifier system</td>
</tr>
<tr>
<td>m_s</td>
<td>Minimum slit width</td>
</tr>
<tr>
<td>n</td>
<td>f-number</td>
</tr>
<tr>
<td>n</td>
<td>Refractive index</td>
</tr>
<tr>
<td>n</td>
<td>Total number of lines in a grating</td>
</tr>
<tr>
<td>N</td>
<td>The normal of a grating or prism</td>
</tr>
<tr>
<td>O</td>
<td>Aberration</td>
</tr>
<tr>
<td>O_1</td>
<td>Basic aberration</td>
</tr>
<tr>
<td>O_{ss}</td>
<td>Additive aberration</td>
</tr>
<tr>
<td>P</td>
<td>Power</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier tube</td>
</tr>
<tr>
<td>PPS</td>
<td>Pulses per second; also, events per second</td>
</tr>
<tr>
<td>PSD</td>
<td>Phase-sensitive detector (in the lock-in); also, position-sensitive (counting) detector</td>
</tr>
<tr>
<td>Q</td>
<td>Energy of radiation R; also, the numerical resolution</td>
</tr>
<tr>
<td>Q</td>
<td>Ratio of the numerical resolution R_p/R_p</td>
</tr>
<tr>
<td>Q</td>
<td>Quality factor</td>
</tr>
<tr>
<td>QE</td>
<td>Quantum efficiency</td>
</tr>
<tr>
<td>r</td>
<td>Radius of curved slits; also, the distance of the slit to the instrument’s center</td>
</tr>
<tr>
<td>R</td>
<td>Normalized reflectance of a sample</td>
</tr>
<tr>
<td>R</td>
<td>Numeric resolution</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
</tr>
</tbody>
</table>
Glossary of Symbols and Notation

RD Reciprocal dispersion
ROI Region of interest
R_p Theoretical resolution of a dispersing element
r_p Absolute value of parallel polarization
r_s Absolute values of perpendicular polarization
R_r Real experimental resolution
s Constant of thermal diffusion
SL Number of vertical lines of a CCD
SNR (S/N-R) Signal-to-noise ratio
sr Steradian
SR Number of horizontal register pixels of a CCD
STD Standard deviation
T Temperature; also, thermal change
T Normalized transmission in photometric applications
w Median distance of a mirror to the center line or grating center axis
W Active grating or mirror width
W Electrical or optical work
x Geometric dilation as a function of thermal change
x Half the inclusion angle at the grating
y Geometric increase of the focal spot as a function of thermal change and dilatation
α Angle of the light illuminating the grating or prism with respect to N
β Angle of the diffracted or refracted light leaving the disperser with respect to N
δ Inclusion angle of the light at the disperser originating from the lateral distance and width of the mirrors
δ Phase angle or phase shift ellipsometry (SE)
Δ Imaginary part of ellipsometric data
ε_1 Angle of the grating-impinging beam
ε_2 Angle of the beam leaving the grating
ι Internal off-axis angle
ι_h Horizontal off-axis angle in a spectrometer
ι_v Vertical off-axis angle in a spectrometer
λ Wavelength
ν Oscillation frequency of a light wave
$\tilde{\nu}$ Frequency of a light wave presented as a wavenumber
ρ Complex result of ellipsometric data
σ Statistical parameter often used for deviations
τ Time constant
Φ Angle of sample illumination in ellipsometry
Φ Median grating angle
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>Phase angle/phase shift in phase/modulation lifetime measurements</td>
</tr>
<tr>
<td>Φ</td>
<td>Radiant power/flux</td>
</tr>
<tr>
<td>Ψ</td>
<td>Real part of ellisometric data</td>
</tr>
<tr>
<td>ω</td>
<td>Angular frequency</td>
</tr>
<tr>
<td>ω</td>
<td>Normalized cone angle of illumination</td>
</tr>
<tr>
<td>Ω</td>
<td>Acceptance angle</td>
</tr>
<tr>
<td>Ω</td>
<td>Real and normalized aperture of a spectrometer; also, light-guiding factor</td>
</tr>
</tbody>
</table>