

Bibliography

Bibliography

Bibliography

Field Guide to Digital Micro Optics
Bibliography

Bibliography

Field Guide to Digital Micro Optics
Bibliography

Bibliography

Field Guide to Digital Micro Optics
Bibliography

Bibliography

Index

2D MEMS arrays, 99
3D MEMS arrays, 99
Abbe V number, 33
active-matrix OLED (AMOLED), 95
amplitude grating, 26
analytic diffractive element, 20
analytic element, 21, 24
random errors, 152
angular bandwidth, 87
antireflection (AR), 12, 69
aplications, 154
athermalization, 37
backlight, 103
beam-shaping CGH, 57
beam steering, 18
binary greyscale masking, 141
binary phase grating, 27
Bragg condition, 84
Bragg grating, 83
Bragg plane, 98
cladding, 7
computational optics, 92
contact mode, 136
core, 7
critical dimension (CD), 143
Dammann grating, 60
depth of focus (DOF), 33, 138
detuning parameter, 85
DFT-based propagators, 117, 121
DFT-based scalar propagators, 118
diamond ruling, 128
diamond turning machine (DTM), 128
diffraction asymmetry, 72
diffraction efficiency, 28, 30
diffraction through a reticle, 138
diffraction analytic beam shapers, 42
diffractive Fresnel lens, 31
diffractive lens, 32
diffractive null lens, 47
diffractive phase depth, 4
digital electronics, 1
digital micro-optics, 1
direct binary search (DBS), 55
direct write, 139
dynamic diffractive element, 20
effective medium theory (EMT), 67, 107
efficiency loss, 152
electroactive polymer (EAP), 106
extended depth of focus (EDOF), 44
f-number, 33
fabrication errors, 152
far field, 110
FFT-based propagators, 111
finite-difference time domain (FDTD), 107

Field Guide to Digital Micro Optics
Index

Floquet, 84–85
Fourier diffractive element, 22
Fraunhofer hologram, 81
free-space micro-optics, 3, 11
Fresnel diffractive optical element, 22
Fresnel hologram, 81
Fresnel lens, 4
Gabor, Denis, 78
Gerchberg x2013Saxton algorithm, 54
glass wafer, 135
graded-index (GRIN) micro-optics, 8, 12
grating strength, 85
grating vector, 83
grating-assisted coupler, 71
greyscale masking, 140
GRIN lens, 12–13
GRIN rod, 13
guided-wave micro-optics, 3
head-mounted display (HMD), 17
high-energy beam-sensitive (HEBS) glass, 140, 142
holohraphic exposure, 124
holohraphic optical element (HOE), 20
holohographic-polymer dispersed liquid crystal (H-PDLC), 97
hybrid refractive/diffrefactive singlet, 39
embedding, 113
IMOD MEMS display panels, 101
insertion losses (ILs), 10
interference, 82
interferogram lens, 48
ion diffusion, 126
iterative Fourier transform algorithm (IFTA), 54
Kogelnik, Herwig, 86
large-period grating, 63
Leith, Emmett, 78
light-absorbing film (LAF), 142
light-field camera, 16
light-field display, 17
liquid-crystal micro-display, 94
light pipe, 8
liquid crystal, 93
liquid lens, 105
local grating approximation (LGA), 108
MEMS gratings, 100
merit function, 53
metamaterials, 75
metasurfaces, 76
microlens array (MLA), 1, 19, 59
micro-optics industry, 153
micro-refractive lens, 127

Field Guide to Digital Micro Optics

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 11 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Index

minimum feature size, 138
moiré DOE (M-DOE), 104
multifocus lens, 59
multi-level lithography, 123
multi-level optical lithography, 130
multiple holographic exposures, 125
narrow-band diffractive, 34
near field, 110
numeric diffractive element, 20, 21, 51
numerical aperture (NA), 7, 33
numerical reconstruction windows, 117
optical lithography, 136
optical pick-up unit (OPU), 46
optical proximity correction (OPC), 144
optical waveguide, 7–8
optothermal expansion coefficient, 37
organic light-emitting diode (OLED), 95
oversampling, 112
parameters, 9
parity time (PT), 70
periodicity condition, 4
photomask patterning, 143
photonic crystal (PC), 74
physical optics modeling, 114
planar waveguides, 8
plastic replication techniques, 147
playback, 77, 98
point spread function (PSF), 138
polarization beamsplitter (PBS), 94
projection mode, 136
proximity mode, 136
pulse-density-modulation (PDM), 66
pulsewidth modulation (PWM), 66
quantum dot (QD), 96
ray tracing, 108
Rayleigh resolution criterion, 138
Rayleigh–Sommerfeld diffraction integral, 109
reconfigurable optics, 92
reconstructed aerial image, 138
recording, 77, 98
reflective grating, 25
reflow, 126
refractive effect, 4
refractive microlens arrays, 15
replication, 145
resist, 126
resolution, 138
rigorous coupled-wave analysis (RCWA), 86, 107
roll-to-roll embossing, 148

Field Guide to Digital Micro Optics
Index

scalar diffraction theory, 5
scratch-o-grams, 123
shift in focal length, 33
shim, 145
shim recombination, 146
silicon wafer, 135
simulated annealing (SA), 56
smallest feature, 33
small-period grating, 63
space–bandwidth product (SBWP), 50
spatial multiplexing, 46
spectral bandwidth, 87
spectral dispersion, 14
spot array generator, 58
step-index waveguide, 8
steppers, 137
subwavelength diffractive element, 20
subwavelength micro-optics, 62
successive-order modes, 9
surface, 69
surface plasmon polariton (SPP), 73
surface-relief hologram, 89
Sweatt model, 108
switchable optics, 92
systematic errors, 152
Talbot effect, 61
thick hologram, 79
thin hologram, 79
total internal reflection (TIR), 6–7
transmissive MEMS panels, 101
tunable optics, 92
Upatnieks, Juris, 78
vortex lens, 43
wafer-scale micro-optics, 3
wide-band diffractive, 34
zero-order grating, 63–64
For over 20 years, Bernard Kress has made significant scientific contributions as a researcher, professor, consultant, advisor, instructor, and author, making major contributions to digital micro-optical systems for consumer electronics, generating IP, and teaching and transferring technological solutions to industry. Many of the world’s largest producers of optics and photonics products have consulted with him on a wide range of applications, including laser-material processing, optical security, optical telecom/datacom, optical data storage, optical computing, optical motion sensors, optical gesture sensing, depth mapping, heads-up displays, head-mounted displays, virtual-reality headsets and smart glasses, pico-projectors, micro-displays, digital imaging processing, and biotechnology sensors.

Kress has more than 30 international patents. He has published four books, a book chapter, 102 refereed publications and proceedings, and numerous technical publications. He has also been involved in European research in micro-optics, including the Eureka Flat Optical Technology and Applications (FOTA) project and the Network for Excellence in Micro-Optics (NEMO) project. He is currently the Optics Lead of the Advanced Prototypes Lab at Google[X] Labs in Mountain View, California.