Figure Sources

p. 10 bottom http://en.wikipedia.org/wiki/Laser_safety. Figure created by Han-Kwang Nienhuys and released under license CC-BY-2.5.

p. 11 http://en.wikipedia.org/wiki/Laser_safety. Figure created by Dahn and released under licence CC-BY-2.5.

p. 18 Figure created by R. Pogge from ATRAN model data of Lord, S.D. (1992, NASA Technical Memor. 103957) from the Gemini Observatory website (http://www.gemini.edu).

p. 19 bottom © The Worlds of David Darling.

p. 27 Courtesy of Agilent Technologies.

p. 30 http://en.wikipedia.org/wiki/Pink_noise. Figure created by Marrakkk and released under license CC BY-SA 3.0.

p. 40 Courtesy of Matthew Dierking, Air Force Research Lab.

Figure Sources

p. 68 Courtesy of Jeff Hecht.

p. 73 top http://en.wikipedia.org/wiki/Mode-locking. Released under license CC BY-SA 3.0-MIGRATED.

p. 87 Courtesy of Intevac, Inc. http://www.intevac.com/intevacphotronics/ebaps-technology-overview/. Figure reprinted with permission.

Figure Sources

p. 113 Courtesy of Raytheon.

Bibliography

Bibliography

Index

1D lidar, 3
1D slices, 41
1D waveguide, 66
1D waveguide lasers, 66
1/f noise, 7, 30
2D lidar, 2, 42
3D lidar, 3
3D mapping, 4, 43
3D point cloud images, 127
3D scanning lidars, 43
3D shape, 127
3D shape information, 43
3D voxels, 122, 127

absolute motion, 115
absorption, 109
accelerometers, 115
acousto-optic devices, 85
acousto-optic modulator, 85
active cladding layer, 105
active multispectral imaging, 54
adaptive optics mirror, 22
aero-optical effect, 21
aero-optical layer, 21
afterpulsing, 32
Airy disk, 92
all-positive lenslet approach, 112
amplification stages, 75
amplitude variations, 22
angle information, 41
angular distribution, 41
angular resolution, 59
angular rotation, 50
applied voltage, 99
archeological mapping, 4
artificial gain medium, 68

atmospheric absorption, 18
atmospheric coherence time, 20
atmospheric loss, 19
atomic constituents, 52
autocorrelation, 124
avalanche gain, 31
avalanche photodiode, 30–31, 44–45, 82
background noise, 29
band structure engineering, 68
bandwidth of the lidar, 40
beam, 8
beam quality, 74
birefringence, 99
bistatic lidar, 1, 12, 61
blue shift, 90
bulk defects, 30
bulk solid state lasers, 64
carrier-to-noise ratio, 37
cascade diode lasers, 67
cellular network planning, 4
central limit theorem, 26
chip, 80, 102
chirping, 47
circularly polarized gratings, 107
class cladding, 65
Class 1 lasers, 11
Class 2 lasers, 11
Class 3 lasers, 11
Class 3B lasers, 11
Class 4 lasers, 11
clock frequency drifts, 117
Index

CO₂, 6, 18
CO₂ laser, 61
code division multiple access, 80
coherece converters, 61
coherece length, 9
cohereent detection, 84
cohereent detection system, 41
cohereent lidar, 1, 3, 7, 24, 28
cohereent receiver, 34
coincidence processing, 45
coincident returns, 32
conformal steering approach, 95
constant fraction detection, 119
controlled laser modes, 66
convolution, 117
corner cubes, 15
cross section, 14
cross section of a corner cube, 16
dark current, 30
dark current noise, 30
dark frame subtraction, 30
dead time, 83
deflection efficiency, 85
defeormable mirror, 22
degree of polarization, 55
delta function, 89
detector angular subtense, 3, 92, 114
differential absorption lidar, 5
diffraction limit, 8
digital beam steering, 109
digital convolution, 117
digital holography, 7, 33
dihedral, 16
diode, 65
diode lasers, 61, 67
direct detection, 7, 23, 25, 31
direct detection lidar, 24, 81
direct detection receiver, 34
direction of the illumination, 55
discrete Poisson probability density function, 26
Doppler lidar, 5
Doppler shift, 48, 77, 90, 126
Doppler shift measurement time, 90
Doppler spectrum, 41
doublet pulse waveform, 78
dual-frequency liquid crystals, 99
edge-emitting diode lasers, 67
effective aperture, 59
effective grayscale, 83
effective range profile, 83
effectively apodized aperture array, 59
electrical singal-to-noise ratio, 25
electro-optical scanning, 106
Index

electron-bombarded active-pixel sensor, 87
electron-bombarded semiconductor, 87
electronic levels, 53
electrowetting, 104
emission spectrum, 52
emission wavelengths, 52
end pumping, 69
energy received equation, 23
Er:YAG lasers, 64
excess noise, 30
excess noise factor, 30
eye damage threshold, 10
eye safety, 10
eyesafe region, 64

fast Fourier transform, 121
fast-steering mirror, 94
ferroelectric liquid crystals, 109
fiber laser, 65
fiber lasers, 61
fiber tip damage, 66
field of view, 3
fill factor, 103
fixed-pattern noise, 30
flash image, 115
flash imagers, 44
flash imaging, 1
flash imaging with lidar, 88
flash lidar, 12
flashlamps, 69
flicker noise, 30
flyback region, 100
FM chirp, 77
focal spot, 116
focal spot diameter, 114
focusing ability, 114
forestry lidar, 4
forward-looking infrared cameras, 86
four-level laser, 63
Fourier transform, 121
frequency chirping, 89
frequency division multiple access, 80
frequency line shape, 73
frequency shifting, 76
Fresnel loss, 109
Fried parameter, 20
fringing fields, 100–101
frozen atmosphere assumption, 20–21
gain medium, 75
gain region, 65
gamma distribution, 26
gated 2D camera, 42
gated 2D imaging, 87
gating circuitry, 42
Gaussian beam, 8
Gaussian illumination, 98
Gaussian probability density function, 26
Gaussian-shaped pulse, 118
Geiger-mode APD, 23, 83, 115
Geiger-mode APD camera, 122
Geiger-mode lidar, 125
general image quality equation, 123
geometrical optics, 114
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gimbal pointing</td>
<td>93</td>
</tr>
<tr>
<td>gimbals</td>
<td>21, 93</td>
</tr>
<tr>
<td>GMAPD detection events</td>
<td>32</td>
</tr>
<tr>
<td>GMAPD flash imagers</td>
<td>45</td>
</tr>
<tr>
<td>GMAPD-based flash imaging</td>
<td>45</td>
</tr>
<tr>
<td>gyroscopes</td>
<td>115</td>
</tr>
<tr>
<td>half-power point</td>
<td>98</td>
</tr>
<tr>
<td>hard targets</td>
<td>54</td>
</tr>
<tr>
<td>heterodyne detection</td>
<td>23, 89</td>
</tr>
<tr>
<td>heterodyne detection receiver</td>
<td>34</td>
</tr>
<tr>
<td>heterodyne mixing efficiency</td>
<td>35</td>
</tr>
<tr>
<td>HgCdTe</td>
<td>46</td>
</tr>
<tr>
<td>high range resolution</td>
<td>47</td>
</tr>
<tr>
<td>high time–bandwidth product waveform</td>
<td>78</td>
</tr>
<tr>
<td>high time–bandwidth product waveforms</td>
<td>77</td>
</tr>
<tr>
<td>high-duty-cycle waveforms</td>
<td>67</td>
</tr>
<tr>
<td>high-gain laser media</td>
<td>75</td>
</tr>
<tr>
<td>high-index oil</td>
<td>104</td>
</tr>
<tr>
<td>hill climbing algorithm</td>
<td>58</td>
</tr>
<tr>
<td>HoTm:YAG lasers</td>
<td>64</td>
</tr>
<tr>
<td>illuminator aperture</td>
<td>12</td>
</tr>
<tr>
<td>imposing the small motion</td>
<td>116</td>
</tr>
<tr>
<td>in-plane steering</td>
<td>105</td>
</tr>
<tr>
<td>index of refraction</td>
<td>20</td>
</tr>
<tr>
<td>index of refraction change</td>
<td>72</td>
</tr>
<tr>
<td>inertial measurement unit</td>
<td>115</td>
</tr>
<tr>
<td>interband lasers</td>
<td>67</td>
</tr>
<tr>
<td>interference</td>
<td>17, 56</td>
</tr>
<tr>
<td>intermediate frequency</td>
<td>36–37</td>
</tr>
<tr>
<td>inverse synthetic aperture lidar</td>
<td>50</td>
</tr>
<tr>
<td>inverse synthetic aperture radar</td>
<td>50</td>
</tr>
<tr>
<td>irradiation</td>
<td>52</td>
</tr>
<tr>
<td>isolation</td>
<td>75</td>
</tr>
<tr>
<td>isoplanatic angle</td>
<td>20</td>
</tr>
<tr>
<td>isoplanatic patch</td>
<td>20</td>
</tr>
<tr>
<td>Johnson noise</td>
<td>27</td>
</tr>
<tr>
<td>Johnson’s criteria</td>
<td>123</td>
</tr>
<tr>
<td>Kerr-effect EO crystals</td>
<td>106</td>
</tr>
<tr>
<td>KTN</td>
<td>106</td>
</tr>
<tr>
<td>LADAR</td>
<td>2</td>
</tr>
<tr>
<td>Lambertian scattering</td>
<td>29</td>
</tr>
<tr>
<td>large-angle steering</td>
<td>113</td>
</tr>
<tr>
<td>largest angle that can be steered</td>
<td>98</td>
</tr>
<tr>
<td>laser beam divergence</td>
<td>8</td>
</tr>
<tr>
<td>laser designators</td>
<td>6</td>
</tr>
<tr>
<td>laser diodes</td>
<td>6</td>
</tr>
<tr>
<td>laser imaging and ranging</td>
<td>72</td>
</tr>
<tr>
<td>laser linewidth</td>
<td>74</td>
</tr>
<tr>
<td>laser pulse</td>
<td>77</td>
</tr>
<tr>
<td>laser radar</td>
<td>2</td>
</tr>
<tr>
<td>laser radiation</td>
<td>10</td>
</tr>
<tr>
<td>laser range finders</td>
<td>6</td>
</tr>
<tr>
<td>laser remote sensing</td>
<td>2</td>
</tr>
<tr>
<td>laser resonator</td>
<td>62</td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>laser signal</td>
<td>1</td>
</tr>
<tr>
<td>laser vibrometer</td>
<td>48</td>
</tr>
<tr>
<td>laser vibrometer signal processing</td>
<td>126</td>
</tr>
<tr>
<td>laser vibrometry</td>
<td>126</td>
</tr>
<tr>
<td>laser waveform</td>
<td>1</td>
</tr>
<tr>
<td>laser-induced breakdown signal processing</td>
<td>126</td>
</tr>
<tr>
<td>laser-induced fluorescence</td>
<td>5</td>
</tr>
<tr>
<td>laser-induced fluorescence lidar</td>
<td>53</td>
</tr>
<tr>
<td>leading edge detection</td>
<td>119</td>
</tr>
<tr>
<td>lensless imaging</td>
<td>121</td>
</tr>
<tr>
<td>lenslet-based beam steering</td>
<td>110</td>
</tr>
<tr>
<td>Level 0 (L0)</td>
<td>125</td>
</tr>
<tr>
<td>Level 1 (L1)</td>
<td>125</td>
</tr>
<tr>
<td>Level 2 (L2)</td>
<td>125</td>
</tr>
<tr>
<td>Level 3 (L3)</td>
<td>125</td>
</tr>
<tr>
<td>Level 4 (L4)</td>
<td>125</td>
</tr>
<tr>
<td>Level 5 (L5)</td>
<td>125</td>
</tr>
<tr>
<td>lidar, 1–2</td>
<td></td>
</tr>
<tr>
<td>lidar clock frequency</td>
<td>117</td>
</tr>
<tr>
<td>lidar cross section</td>
<td>15</td>
</tr>
<tr>
<td>lidar data processing stages</td>
<td>125</td>
</tr>
<tr>
<td>lidar development</td>
<td>6</td>
</tr>
<tr>
<td>lidar image stabilization</td>
<td>88</td>
</tr>
<tr>
<td>lidar peak power</td>
<td>66</td>
</tr>
<tr>
<td>lidar pulse</td>
<td>89</td>
</tr>
<tr>
<td>lidar range equations</td>
<td>14</td>
</tr>
<tr>
<td>lidar range resolution</td>
<td>89</td>
</tr>
<tr>
<td>lidar waveform</td>
<td>77</td>
</tr>
<tr>
<td>lidar wavelengths</td>
<td>18</td>
</tr>
<tr>
<td>LIMAR</td>
<td>86</td>
</tr>
<tr>
<td>LiNbO₃</td>
<td>106</td>
</tr>
<tr>
<td>line broadening</td>
<td>73</td>
</tr>
<tr>
<td>linear EO crystals</td>
<td>106</td>
</tr>
<tr>
<td>linear EO effect</td>
<td>106</td>
</tr>
<tr>
<td>linear FM waveforms</td>
<td>80</td>
</tr>
<tr>
<td>linear frequency modulation</td>
<td>79, 89</td>
</tr>
<tr>
<td>linear-mode APD</td>
<td>23, 46, 82, 122</td>
</tr>
<tr>
<td>liquid crystal layer</td>
<td>100</td>
</tr>
<tr>
<td>liquid crystal polarization gratings</td>
<td>108</td>
</tr>
<tr>
<td>liquid crystal steering device</td>
<td>99</td>
</tr>
<tr>
<td>local oscillator</td>
<td>28, 33, 37</td>
</tr>
<tr>
<td>local oscillator power</td>
<td>24</td>
</tr>
<tr>
<td>long-focal-length optics</td>
<td>114</td>
</tr>
<tr>
<td>long-integration-time framing cameras</td>
<td>86</td>
</tr>
<tr>
<td>low energy per pulse</td>
<td>83</td>
</tr>
<tr>
<td>low-index water</td>
<td>104</td>
</tr>
<tr>
<td>master oscillator</td>
<td>75</td>
</tr>
<tr>
<td>master oscillator, power amplifier</td>
<td>75</td>
</tr>
<tr>
<td>matched filter</td>
<td>117</td>
</tr>
<tr>
<td>maximum permissible exposure</td>
<td>10–11</td>
</tr>
<tr>
<td>measured range profile</td>
<td>117</td>
</tr>
<tr>
<td>MEMS mirror</td>
<td>94</td>
</tr>
<tr>
<td>MEMS mirror arrays</td>
<td>103</td>
</tr>
<tr>
<td>MEMS-mirror-based steering</td>
<td>103</td>
</tr>
<tr>
<td>micro-actuators</td>
<td>103</td>
</tr>
<tr>
<td>microlens array</td>
<td>110</td>
</tr>
<tr>
<td>micromotion</td>
<td>116</td>
</tr>
<tr>
<td>Mie scattering</td>
<td>19</td>
</tr>
<tr>
<td>mixed set of lenslet arrays</td>
<td>112</td>
</tr>
</tbody>
</table>
Index

mixed-lenslet steering, 112
mixed-pixel effect, 55
mode-locked lasers, 73
modulo 2π beem steering, 97
modulo 2π phase profile, 97
monochromaticity, 9
monostatic lidars, 1, 12
Mueller matrix characterization, 55
multiple input, multiple output lidars, 12
multiple pulses, 83
multiple subapertures, 124
multiple tagged laser transmitters, 76
multiple-aperture lidars, 57
multiple-input, multiple-output lidars, 57, 59
nanofabricated phased arrays, 102
National Imagery Interpretability Rating Scale, 123
Nd:YAG designators, 64
Nd:YAG lasers, 61, 64
negative binominal distribution, 26
nitrogen, 18
noise current, 24
noise equivalent photons, 87
noise equivalent temperature difference, 87
noise probability density functions, 26
nonlinear effects, 70
number of photons, 32
numerical aperture, 114
Nyquist criterion, 118
Nyquist noise, 27
Nyquist sampling theorem, 118
object identification, 127
oil and gas exploration, 4
optical breakdown, 52
optical parametric amplifier, 70
optical parametric oscillator, 70
optical path difference, 97
optical phased arrays, 57
optical power received, 14
optimal wavelengths, 54
order of the blaze, 104
out-of-plane steering, 105
overall laser efficiency, 75
oxygen, 18
pattern of changes, 91
peak detection, 119
peak-power limitation, 65
periodically poled lithium niobate, 70
phase center, 49
phase change, 22
phase correction, 22
phase corrector plates, 110
phase delay, 111
phase function, 92
phase irregularities, 56
phase profile, 92
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase screen</td>
<td>92</td>
</tr>
<tr>
<td>phase shift interferometry</td>
<td>7</td>
</tr>
<tr>
<td>phase steps</td>
<td>101</td>
</tr>
<tr>
<td>phase up the multiple subapertures</td>
<td>60</td>
</tr>
<tr>
<td>phased array of phased-array imaging</td>
<td>57</td>
</tr>
<tr>
<td>photon</td>
<td>28</td>
</tr>
<tr>
<td>photonic crystal fiber lasers</td>
<td>66</td>
</tr>
<tr>
<td>photonic crystal fibers</td>
<td>65–66</td>
</tr>
<tr>
<td>pink noise</td>
<td>30</td>
</tr>
<tr>
<td>pitch</td>
<td>115</td>
</tr>
<tr>
<td>Pockels cell</td>
<td>47, 71–72</td>
</tr>
<tr>
<td>point spread function</td>
<td>3, 92</td>
</tr>
<tr>
<td>polarimetric measurements</td>
<td>55</td>
</tr>
<tr>
<td>polarization</td>
<td>13, 55</td>
</tr>
<tr>
<td>polarization-based flash lidar imaging</td>
<td>47</td>
</tr>
<tr>
<td>polarization-encoded imaging</td>
<td>44</td>
</tr>
<tr>
<td>polarizing beamsplitter</td>
<td>13</td>
</tr>
<tr>
<td>polygon scanning</td>
<td>96</td>
</tr>
<tr>
<td>polymers</td>
<td>99</td>
</tr>
<tr>
<td>polypulse waveform</td>
<td>78</td>
</tr>
<tr>
<td>population inversion</td>
<td>63</td>
</tr>
<tr>
<td>power received equation</td>
<td>23</td>
</tr>
<tr>
<td>precise object identification</td>
<td>4</td>
</tr>
<tr>
<td>preform</td>
<td>65</td>
</tr>
<tr>
<td>pseudo-random-coded modulation</td>
<td>77, 89</td>
</tr>
<tr>
<td>pseudo-random-coded waveform</td>
<td>80</td>
</tr>
<tr>
<td>pulse doublet</td>
<td>77–78</td>
</tr>
<tr>
<td>pulse position modulation</td>
<td>80</td>
</tr>
<tr>
<td>pulsed ultraviolet sources</td>
<td>53</td>
</tr>
<tr>
<td>Q, 71</td>
<td></td>
</tr>
<tr>
<td>Q switching</td>
<td>71</td>
</tr>
<tr>
<td>Q-switched lasers</td>
<td>42</td>
</tr>
<tr>
<td>quadratic Kerr effect</td>
<td>106</td>
</tr>
<tr>
<td>quadrature detection</td>
<td>36</td>
</tr>
<tr>
<td>quantization loss</td>
<td>101</td>
</tr>
<tr>
<td>quantum cascade lasers</td>
<td>68</td>
</tr>
<tr>
<td>quantum defect</td>
<td>63</td>
</tr>
<tr>
<td>quarter-wave plate, half-wave plate, quarter-wave plate</td>
<td>107</td>
</tr>
<tr>
<td>quasi-cw operation</td>
<td>64</td>
</tr>
<tr>
<td>quasi-four-level lasers</td>
<td>63</td>
</tr>
<tr>
<td>radiance</td>
<td>14</td>
</tr>
<tr>
<td>radiance per wavelength</td>
<td>29</td>
</tr>
<tr>
<td>Raman lidar</td>
<td>5</td>
</tr>
<tr>
<td>random interference</td>
<td>9</td>
</tr>
<tr>
<td>range</td>
<td>3</td>
</tr>
<tr>
<td>range accuracy</td>
<td>120</td>
</tr>
<tr>
<td>range depth</td>
<td>79</td>
</tr>
<tr>
<td>range Doppler imaging</td>
<td>51</td>
</tr>
<tr>
<td>range information</td>
<td>41, 47</td>
</tr>
<tr>
<td>range measurement accuracy</td>
<td>117</td>
</tr>
<tr>
<td>range precision</td>
<td>120</td>
</tr>
<tr>
<td>range profile</td>
<td>40</td>
</tr>
<tr>
<td>range resolution</td>
<td>3, 40, 120</td>
</tr>
<tr>
<td>range uncertainty</td>
<td>79</td>
</tr>
<tr>
<td>range-gated active imaging</td>
<td>42</td>
</tr>
</tbody>
</table>

Field Guide to Lidar
Index

range-only lidar, 3
range-resolved data, 53
range/species resolution, 53
Rayleigh scattering, 19
read-out integrated circuit, 82
receive aperture, 12
receive-only arrays, 57
receiver, 13
reconstruct the range profile, 118
red shift, 90
reference beam, 36
reference frame adjustment, 50
reflective or transmissive modes, 104
relative motion, 115
relative time delay, 40
required transmitted energy, 23
retina, 10
RF modulation, 81
Risley gratings, 95
Risley prisms, 95
roll, 115
rotating phase, 108
rotating polygons, 96
rotation speed, 41
route planning, 4
sag formula, 111
sampling density, 116
saturable absorber, 71
sawtooth phase profile, 97
scanning lidars, 122
scatter, 109
seeding a laser, 74
series of sine waves, 118
shot noise, 27–28
side pumping, 64, 69
signal current, 24
signal-to-noise equation, 25, 39
signal-to-noise ratio, 23–24, 37, 82
single detector, 51
slip rings, 93
solid angle return, 16
solid state lasers, 61
spatial coherence, 8
spatial fringes, 35
spatial heterodyne detection, 7, 33, 38–39, 86, 124
spatial heterodyne imaging, 58
speckle, 9, 17
speckle imaging lidar, 56
speckle pattern, 56
speckle realization, 17
spectroscopic analysis, 52
spontaneous emission, 63
spurious sidelobes, 102
stabilization, 43
stable resonators, 62
standard framing cameras, 47
steering angle, 110
steering efficiency, 101
steering efficiency versus angle, 100
steering loss, 109
steering prisms, 95
steering to discrete angles, 110
stimulated emission, 63

Field Guide to Lidar
Index

stitching, 115
stochastic parallel gradient descent, 58
Stokes vector, 55
stretch processing, 79
subapertures, 59
sum and difference frequency generation, 70
super-Gaussian, 8
super-Gaussian beam, 8
surface of the eye, 10
surface roughness, 55
surveying, 4
switching time, 99
synthetic aperture imagers, 49
synthetic aperture lidar, 3, 49
synthetic aperture radar, 49
target reflectivity, 14
temporal coherence, 9
temporal heterodyne detection, 7, 33–35, 84–85
temporal heterodyne imaging, 58
temporal heterodyning, 48
ternary steering, 108
thermal noise, 27
three-level laser, 63
threshold detectors, 119
Ti:sapphire laser, 73
tilting, 103
time analysis, 53
time division multiple access, 80
time gating, 52
time tag, 89
time–bandwidth product, 78
Tm:YAG lasers, 64
tomographic images, 41
transmissive beam steering, 104
transmit and receive arrays, 57
transmit aperture, 12
transmit/receive isolation, 13
transmitter, 13
transmitter array, 76
trihedral, 16
turbulence, 21
unambiguous range, 47, 91
uniform illumination, 98
unstable resonators, 62
velocity, 90
vertical-cavity surface-emitting lasers, 67
vibration, 48
vibrational image, 48
virtual phase screen, 22
volume holographic gratings, 113
water vapor, 18
waveform generator, 1
waveguide coupler, 105
wide-angle steering, 110
yaw, 115
zero crossing, 95
Paul McManamon owns Exciting Technology LLC and is the Technical Director of Ladar and Optical Communications Institute (LOCI) at the University of Dayton. Dr. McManamon recently chaired the National Academy of Sciences (NAS) study “Laser Radar: Progress and Opportunities in Active Electro-Optical Sensing,” released in March, 2014. Dr. McManamon co-chaired the NAS study, “Optics and Photonics: Essential Technologies for Our Nation,” released in August, 2012. This study recommended the National Photonics Initiative. He also served as Vice Chair to the 2010 NAS study “Seeing Photons.”

Dr. McManamon started at Wright-Patterson Air Force Base in May 1968 and retired from the same in 2008 as Chief Scientist of the Sensors Directorate, U.S. Air Force Research Laboratory (AFRL). Previous to that he was Senior Scientist of EO Sensors, and before that, acting chief scientist for Avionics, also at AFRL.

In 2006 he received the Meritorious Presidential Rank Award. He has participated in three Air Force Scientific Advisory Board studies. He was instrumental in the development of laser flash imaging to enhance EO target recognition range by a factor of 4 or 5. Dr. McManamon was the 2006 President of SPIE. He served on the SPIE Board of Directors for seven years and on the SPIE Executive Committee for four years. In 1998, Dr. McManamon and his co-authors received the IEEE W.R.G. Baker award for best paper in any refereed IEEE journal or publication. Dr. McManamon is a Fellow of SPIE, IEEE, OSA, AFRL, MSS, AIAA, and DEPS.