Computed Tomography
Principles, Design, Artifacts, and Recent Advances
THIRD EDITION
Computed Tomography
Principles, Design, Artifacts, and Recent Advances

THIRD EDITION

Jiang Hsieh

SPIE PRESS
Bellingham, Washington USA
Table of Contents

Preface xi
Nomenclature and Abbreviations xv

1 Introduction
1.1 Conventional X-ray Tomography 1
1.2 History of Computed Tomography 7
1.3 Different Generations of CT Scanners 15
1.4 Problems 21
References 21

2 Preliminaries
2.1 Mathematics Fundamentals 25
2.1.1 Fourier transform and convolution 25
2.1.2 Random variables 29
2.1.3 Linear algebra 32
2.2 Fundamentals of X-ray Physics 35
2.2.1 Production of x rays 35
2.2.2 Interaction of x rays with matter 38
2.3 Measurement of Line Integrals and Data Conditioning 44
2.4 Sampling Geometry and Sinogram 47
2.5 Problems 52
References 55

3 Image Reconstruction
3.1 Introduction 57
3.2 Several Approaches to Image Reconstruction 59
3.3 The Fourier Slice Theorem 63
3.4 The Filtered Backprojection Algorithm 67
3.4.1 Derivation of the filtered backprojection formula 70
3.4.2 Computer implementation 74
3.4.3 Targeted reconstruction 88
3.5 Fan-Beam Reconstruction 90
3.5.1 Reconstruction formula for equiangular sampling 91
3.5.2 Reconstruction formula for equal-spaced sampling 98
3.5.3 Fan-beam to parallel-beam rebinning 99
3.6 Iterative Reconstruction
3.6.1 Mathematics versus reality
3.6.2 The general approach to iterative reconstruction
3.6.3 Algebraic reconstruction
3.6.4 System modeling process
3.6.5 Optimization algorithms
3.6.6 Image quality benefit of MBIR
3.6.7 Reconstruction speedup
3.7 Problems
References

4 Image Presentation
4.1 CT Image Display
4.2 Volume Visualization
4.2.1 Multiplanar reformation
4.2.2 MIP, minMIP, and volume rendering
4.2.3 Surface rendering
4.2.4 3D printing
4.3 Impact of Visualization Tools
4.4 Problems
References

5 Key Performance Parameters of the CT Scanner
5.1 High-Contrast Spatial Resolution
5.1.1 In-plane resolution
5.1.2 Slice sensitivity profile
5.2 Low-Contrast Resolution
5.3 Temporal Resolution
5.4 CT Number Accuracy and Noise
5.5 Impact of Iterative Reconstruction on Performance Measurement
5.5.1 Performance-metric-based approach
5.5.2 Task-based approach
5.5.3 Surrogate task with clinical data
5.5.4 Surrogate task with nonclinical data
5.6 Performance of the Scanogram
5.7 Problems
References

6 Major Components of the CT Scanner
6.1 System Overview
6.2 The X-ray Tube and High-Voltage Generator
6.3 The X-Ray Detector and Data-Acquisition Electronics
6.4 The Gantry and Slip Ring
6.5 Collimation and Filtration
Table of Contents

6.6 The Reconstruction Engine 238
6.7 The Patient Table 240
6.8 Problems 241
References 243

7 Image Artifacts: Appearances, Causes, and Corrections 245
7.1 What Is an Image Artifact? 245
7.2 Different Appearances of Image Artifacts 247
7.3 Artifacts Related to System Design 254
7.3.1 Aliasing 254
7.3.2 Partial volume 267
7.3.3 Scatter 272
7.3.4 Noise-induced streaks 278
7.4 Artifacts Related to X-ray Tubes 281
7.4.1 Off-focal radiation 281
7.4.2 Tube arcing 285
7.4.3 Tube rotor wobble 287
7.5 Detector-Induced Artifacts 287
7.5.1 Offset, gain, nonlinearity, and radiation damage 287
7.5.2 Primary speed and afterglow 291
7.5.3 Detector response uniformity 296
7.6 Patient-Induced Artifacts 301
7.6.1 Patient motion 301
7.6.2 Beam hardening 314
7.6.3 Metal artifacts 325
7.6.4 Incomplete projections 330
7.7 Operator-Induced Artifacts 335
7.8 Problems 339
References 342

8 Computer Simulation and Analysis 349
8.1 What Is Computer Simulation? 349
8.2 Simulation Overview 350
8.3 Simulation of Optics 353
8.4 Computer Simulation of Physics-Related Performance 364
8.5 Problems 371
References 372

COLOR PLATES

9 Helical or Spiral CT 375
9.1 Introduction 375
9.1.1 Clinical needs 375
9.1.2 Enabling technology 379
9.2 Terminology and Reconstruction 380
 9.2.1 Helical pitch 380
 9.2.2 Basic reconstruction approaches 381
 9.2.3 Selection of the interpolation algorithm and reconstruction plane 387
 9.2.4 Helical fan-to-parallel rebinning 391
9.3 Slice Sensitivity Profile and Noise 395
9.4 Helically Related Image Artifacts 402
 9.4.1 High-pitch helical artifacts 402
 9.4.2 Noise-induced artifacts 406
 9.4.3 System-misalignment-induced artifacts 412
 9.4.4 Helical artifacts caused by object slope 417
9.5 Problems 419
References 420

10 Multislice and Cone-beam CT 423
 10.1 The Need for Multislice CT 423
 10.2 Detector Configurations of Multislice and Cone-beam CT 427
 10.3 Nonhelical Mode of Reconstruction 433
 10.4 Helical Reconstruction 447
 10.4.1 Selection of interpolation samples 450
 10.4.2 Selection of region of reconstruction 454
 10.4.3 Reconstruction algorithms with 3D backprojection 456
 10.5 Multislice and Cone-beam Artifacts 462
 10.5.1 General description 462
 10.5.2 Cone-beam effects 464
 10.5.3 Interpolation-related image artifacts 466
 10.5.4 Noise-induced multislice and cone-beam artifacts 468
 10.5.5 Tilt artifacts in multislice and cone-beam helical CT 469
 10.5.6 Distortion in step-and-shoot mode SSP 471
 10.5.7 Artifacts due to geometric inaccuracy 473
 10.5.8 Comparison of multislice and single-slice helical CT 475
 10.6 Problems 477
References 479

11 X-ray Radiation and Dose-Reduction Techniques 487
 11.1 Biological Effects of X-ray Radiation 488
 11.2 Measurement of X-ray Dose 490
 11.2.1 Terminology and the measurement standard 490
 11.2.2 Other measurement units and methods 497
 11.2.3 Issues with the current CTDI 498
 11.3 Methodologies for Dose Reduction 502
 11.3.1 Tube-current modulation 503
 11.3.2 Umbra-penumbra and overbeam issues 505
12 Advanced CT Applications 529

12.1 Introduction 529

12.2 Cardiac Imaging 531
 12.2.1 Coronary artery calcification (CAC) 532
 12.2.2 Coronary artery imaging (CAI) 537
 12.2.2.1 Data acquisition and reconstruction 538
 12.2.2.2 Temporal resolution improvement 545
 12.2.2.3 Spatial resolution improvement 554
 12.2.2.4 Dose and coverage 555

12.3 CT Fluoroscopy 560

12.4 CT Perfusion 566

12.5 Screening and Quantitative CT 575
 12.5.1 Lung cancer screening 575
 12.5.2 Quantitative CT 579
 12.5.3 CT colonography 582

12.6 Dual-Energy CT 585
 12.6.1 Intuitive explanation of DECT material differentiation 585
 12.6.2 Theory of basis material decomposition 588
 12.6.3 Monochromatic image generation 595
 12.6.4 Multimaterial differentiation 599
 12.6.5 DECT data acquisition 600
 12.6.6 Clinical applications of DECT 604

12.7 Problems 610

References 613

Glossary 625

Index 633
Preface

X-ray computed tomography (CT) has experienced a tremendous explosion in technological development over the last quarter century, a phenomenon rarely seen in industry. Few could have predicted the speed, magnitude, and duration of the progress. The third edition of *Computed Tomography* captures the most recent advances in technology and clinical applications.

This third edition provides significant additions in several areas. The first area of major enhancement is on the topic of iterative reconstruction. With the heightened awareness of radiation dose in CT in recent years, iterative reconstruction has evolved from a topic in academic research to the mainstream of CT reconstruction for all commercially available scanners. Chapter 3 describes the fundamental concept of iterative reconstruction, the idea of statistical reconstruction, methodologies used to model CT systems, and searching methodologies for optimal solutions. Given the clinical demands on workflow, a brief discussion on the reconstruction speedup effort is also provided.

One complexity brought by the iterative reconstruction technology is performance evaluation. Unlike the filtered backprojection reconstruction algorithm, in general, iterative reconstruction performance is nonlinear. Although some of the existing measurement approaches are still useful, they are inadequate to fully assess the performance of iteratively reconstructed images. Chapter 5 has an added section that discusses the impact and various measurement methodologies of iterative reconstruction.

Historically, the presentation of the CT outcome has been limited to computer monitors, either at scanner consoles, workstations, or PACS monitors. With the recent advancements in 3D printing, however, physical models can be quickly prototyped to convey CT information. Therefore, a section was added in Chapter 4 to introduce approaches by the early adopters in the area.

In terms of radiation dose, the topic of a size-specific dose estimate (SSDE) has been added. During the last few years, significant attention has been paid to the radiation impact on human health by academic researchers, radiologists, the general public, and the news media. Although awareness on the subject has been increasing, dose measurement methodology was
developed more than a decade ago. The updated Chapter 11 briefly describes
the recent proposal of a dose measurement index, SSDE, in an attempt to
more accurately reflect the dose absorption rates of specific-sized patients, and
proposed modifications to the dose measurement for scanners with large z
coverage.

When the second edition of this book was published, true cone-beam CT
had just been introduced commercially. Nowadays, scanners capable of
single-organ coverage in a rotation are widely available commercially and
have significantly impacted clinical practices. Chapter 10 has been expanded
to discuss the technological challenges associated with wide-cone step-and-
shoot reconstruction and the additional challenges with cardiac imaging.

Dual-energy CT was predominately in the hands of a few researchers at
the time of the second edition publication. The situation has significantly
changed since then, as dual-energy CT is now utilized in routine clinical
applications to aid in disease diagnosis. A significant expansion to Chapter 12
has been written to provide the technology background, theoretical
development, and clinical applications of dual-energy CT.

To enhance readers’ understanding of the material and to inspire creative
thinking about the topics presented, more problems have been added at the
end of each chapter. Many problems are open-ended and may not have
uniquely correct solutions.

At the time of the publication of the second edition, the world was
experiencing an unprecedented financial crisis that some called a financial
“tsunami.” Although we predicted that “CT technology is unlikely to remain
stagnant,” nobody was certain about the true impact the crisis would have on
CT development. Recent advances in CT have shown that the entire industry
remains healthy, and the demand for advanced CT technologies has expanded
beyond the developed counties. The future of CT remains bright.

Acknowledgments

Many of the ideas, principles, results, and examples that appear in this book
stem from thoughts provoked by other books and research papers, and the
author would like to take this opportunity to acknowledge those sources. The
author would like to express his appreciation to Prof. Jeffrey A. Fessler of the
University of Michigan for his review of this text. His expert critical opinions
have significantly strengthened and enhanced the manuscript. The author
owes a debt to two people for supplying materials for all editions of this book:
Dr. Ting-Yim Lee of the Robarts Research Institute for providing reference
materials on CT perfusion, and Mr. Nick Keat of the ImPACT group in
London for supplying historical pictures on early CT development. The
author would also like to thank Dr. T. S. Pan of the M.D. Anderson Cancer
Research Center for providing some of the positron emission computed
tomography images, Dr. P. Kinahan of the University of Washington for providing research results on patient motion artifacts, and Dr. G.-H. Chen for supplying pictures from his research in iterative reconstruction performance. The valuable suggestions and comments made by Dr. N. Pelc from Stanford University are gratefully acknowledged. The author would like to thank many current and former colleagues at GE Healthcare Technologies and the GE Global Research Center for useful discussions, joint research projects, inspiration, and many beautiful images. Finally, the most significant acknowledgment of all goes to the author’s spouse, Lily J. Gong, and his children, Christopher and Matthew, for their unconditional support of the project.

Jiang Hsieh
July 2015
Nomenclature and Abbreviations

AAPM American Association of Physicists in Medicine
ACR American College of Radiology
ALARA as low as reasonably achievable
ART algebraic reconstruction technique
ASIC application-specific integrated circuit
BMD bone mineral density
bpm beats per minute (heart rate)
CAC coronary artery calcification
CAI coronary artery imaging
CAT computer-aided tomography
CBF cerebral blood flow
CBV cerebral blood volume
CDRH Center for Devices and Radiological Health (FDA)
CG conjugate gradient
COPD chronic obstructive pulmonary disease
CT computed tomography
CTDI CT dose index
DAS data acquisition system
DECT dual-energy CT
DFT discrete Fourier transform
DLP dose–length product
DSP digital signal processing
EBCT electron-beam computed tomography
EBT electron-beam tomography
EC European Commission
ECG/EKG electrocardiogram
FBP filtered backprojection
FDA US Food and Drug Administration
FDK Feldkamp–Davis–Kress (cone-beam reconstruction algorithm)
FFR fractional flow reserve
FFT fast Fourier transform
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOV</td>
<td>field of view</td>
</tr>
<tr>
<td>FWHM</td>
<td>full width at half maximum</td>
</tr>
<tr>
<td>FWTM</td>
<td>full width at tenth maximum</td>
</tr>
<tr>
<td>GDE</td>
<td>geometric detection efficiency</td>
</tr>
<tr>
<td>GPU</td>
<td>graphic processor unit</td>
</tr>
<tr>
<td>Gy</td>
<td>grays (a unit used to measure absorbed radiation dose)</td>
</tr>
<tr>
<td>HCT</td>
<td>helical computed tomography</td>
</tr>
<tr>
<td>HU</td>
<td>Hounsfield unit</td>
</tr>
<tr>
<td>IAC</td>
<td>inner auditory canal</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>ICD</td>
<td>iterative coordinate decent</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiological Protection</td>
</tr>
<tr>
<td>IFFT</td>
<td>inverse fast Fourier transform</td>
</tr>
<tr>
<td>IR</td>
<td>iterative reconstruction</td>
</tr>
<tr>
<td>kerma</td>
<td>kinetic energy released to matter</td>
</tr>
<tr>
<td>LCD</td>
<td>low-contrast detectability</td>
</tr>
<tr>
<td>LSF</td>
<td>line spread function</td>
</tr>
<tr>
<td>MBIR</td>
<td>model-based iterative reconstruction</td>
</tr>
<tr>
<td>minMIP</td>
<td>minimum intensity projection</td>
</tr>
<tr>
<td>MIP</td>
<td>maximum intensity projection</td>
</tr>
<tr>
<td>MPR</td>
<td>multiplanar reformation</td>
</tr>
<tr>
<td>MSAD</td>
<td>multiple-scan average dose</td>
</tr>
<tr>
<td>MTF</td>
<td>modulation transfer function</td>
</tr>
<tr>
<td>MTT</td>
<td>mean transit time</td>
</tr>
<tr>
<td>NPS</td>
<td>noise power spectrum</td>
</tr>
<tr>
<td>OS</td>
<td>ordered subset</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission (computed) tomography</td>
</tr>
<tr>
<td>PSF</td>
<td>point spread function</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QDE</td>
<td>quantum detection efficiency</td>
</tr>
<tr>
<td>rad</td>
<td>radiation absorbed dose (a basic unit of absorbed dose of ionizing radiation)</td>
</tr>
<tr>
<td>RCA</td>
<td>right coronary artery</td>
</tr>
<tr>
<td>rem</td>
<td>Roentgen equivalent man (a unit used to measure the amount of damage to human tissue from ionizing radiation)</td>
</tr>
<tr>
<td>ROC</td>
<td>receiver operating characteristics</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>SPECT</td>
<td>single-photon-emission computed tomography</td>
</tr>
<tr>
<td>SSDE</td>
<td>size-specific dose estimate</td>
</tr>
<tr>
<td>SSP</td>
<td>slice sensitivity profile</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Sv</td>
<td>sieverts (a unit used to measure the effect of radiation on the human body)</td>
</tr>
<tr>
<td>TAT</td>
<td>transverse axial tomography</td>
</tr>
<tr>
<td>VR</td>
<td>volume rendering</td>
</tr>
<tr>
<td>WL</td>
<td>(display) window level</td>
</tr>
<tr>
<td>WW</td>
<td>(display) window width</td>
</tr>
</tbody>
</table>